## Can someone explain logarithms?

Seeing all of the other math Instructables on here, I was surprised not see one on logarithms. I just want to learn beyond my mundane curriculum. Thanks.

Seeing all of the other math Instructables on here, I was surprised not see one on logarithms. I just want to learn beyond my mundane curriculum. Thanks.

Hello! I recently had the opportunity to interview marshon. If you have any more questions that you would…

Did you miss out on the postcard? Don't worry. You can get your very own papercraft vampire robot right her…

Design Challenges will be in addition to our other contests. Here is what makes them different than our tra…

The BOSEbuild Design Challenge encourages creative expression through the creation of 3D printable designs …

**I just want to remind everyone that it is fine to find people to join with to make a team BUT remember th…

I'm super excited to give a talk at Maker Faire this year! I hope you're able to make it! Talk Scope: Go f…

From the NASA press release: NASA has released its 2017-2018 software catalog, which offers an extens…

If you've found your way here via Ask A Maker … welcome to Instructables! The first 20 commenters will…

What's more fun that winning a prize? Why winning a mystery prize, of course! We're sending out mystery pri…

Hello Everyone! Many of you have noticed and commented on the site updates that went live on Thursday, Oct…

3,850 views

Posted:

Mar 1, 2009

Bio:I'm in high school and I enjoy hunting and fishing. I enjoy photography. I like fixing things, salvaging things I can't fix, and destroying the things I can't salvage. I enjoy cycling and hope to ex...read more »

Let your inbox help you discover our best projects, classes, and contests. Instructables will help you learn how to make anything!

active| newest | oldest_{b}(N) is that number which, when used to exponentiate b, gives you N. However, I think you're asking, "what are logarithms good for?" Nowadays, not much unless you are a physicist specializing in either thermodynamics or QCD.In the old days, before calculators, logarithms were a way to allow you to do fairly complex arithmetic with nothing but addition and subtraction. For multiplication, there is a rule for exponents: b

^{x}×b^{y}= b^{x+y}. So if you have two numbers N and M which you want to multiply, then you can look up the logarithms, and use log(N)+log(M) = log(N×M). Similarly, for division you have b^{x}/b^{y}= b^{x-y}, and you can use log(N)-log(M) = log(N/M). If you have some complex calculation, you can do everything in terms of logs, and only look up the exponential ("inverse log") at the very end.then you can look up the logarithms_{hee hee, log tables....}In the old days, before calculators, logarithms were a way to allow you to do fairly complex arithmetic with nothing but addition and subtraction.In a very real sense, you can't really do anything to a number except add to it or subtract from it. The rest of math is just fast and fancy ways of doing this.

I'm not fully convinced that your statement is universally correct. Consider the operation of raising to a non-integer power (which is the whole point of logs, after all). Integer powers are equivalent to multiplication (n

^{3 = n×n×n), and multiplication is equivalent to repeated addition. }But if you raise a number to a floating-point power, how do you break that down into addition and subtraction, without invoking some more complex operation to deal with the fractional part?

The “Multiplication is Not Repeated Addition” Research:http://numberwarrior.wordpress.com/2009/05/22/the-multiplication-is-not-repeated-addition-research/

and

“Multiplication is Not Repeated Addition” Revisited:http://numberwarrior.wordpress.com/2010/02/26/multiplication-is-not-repeated-addition-revisited/