Instructables

30 kVA Induction Heater

FeaturedContest Winner
Picture of 30 kVA Induction Heater
2011-07-19_06-14-42_909.jpg
2011-07-08_04-06-30_345.jpg
2011-07-08_04-06-43_228.jpg
2011-07-08_04-06-47_830.jpg
Induction heaters are used to heat conductive materials in a non-contact process. Commercially, they are used for heat treating, brazing, soldering, etc., as well as to melt and forge iron, steel, and aluminum.
This Instructable will walk you through the construction of a high-power (30kVA) heater, suitable for melting aluminum and steel. Note that to take full advantage of this design, you will need a 220V outlet, at least a 50A single-phase one and preferably a 50A or 60A 3-phase outlet.

WARNINGS
  • This project uses mains voltage. While well-behaved, 110/220 mains can seriously injure, maim, and/or kill you if used improperly.
  • The voltage across the tank capacitor can potentially ring up to hundreds of volts. Don't let the 20:1 step-down ratio fool you!
  • When scoping the circuit, beware of ground loops.
  • The work piece, naturally, can get very hot. DO NOT TOUCH! Less obviously, do not rapidly quench the work piece with water, as this can lead to dangerous sputtering.
  • This project uses power electronics. Under fault conditions, semiconductor devices used in this project may rapidly heat, vent, and/or release rapidly moving shrapnel. Shield appropriately.
WIth that said and done, let us move on.
 
Remove these adsRemove these ads by Signing Up

Step 1: Bill of Materials

For this build, you will need:
  • 2 IGBT half-bridge modules. I used Powerex CM400DU-12F 400A 600V Dual IGBTs; anything of similar power handling and switching speed should work. These can be purchased as cheap surplus from Ebay.
  • 4 MOSFETs or IGBTs for the gate drive. I used HGTG30N60B3D's, which are way overkill for the application. They need to be able to dissipate about 30W without burning up.
  • 2 gate drive IC's, of at least 9A peak current capability. I use the UCC37322 from TI.
  • 2 ferrite toroids. These are your gate drive transformers, and should be able to pass a reasonably clean square wave at 50 kHz. Magnetics, Inc. and TSC Ferrite International are good manufacturers, or you can salvage them from old CRTs or switching power supplies. The powered iron cores from ATX supplies rarely work.
  • Large ferrite toroids for the toroidial coupling transfromer.
  • 1 TL494 PWM IC.
  • 1 at least 20 uF, at least 20V film or ceramic capacitor.
  • Assorted resistors, capacitors, and potentiometers for the driver.
  • 10' of 1/4" soft copper refrigeration tubing.
  • A water block capable of accommodating the two IGBTs. A large heatsink may also work, but I haven't tried.
  • 2 aluminum or copper bars, ~3/4"x8"
  • 2 1/4" compression unions
  • A 4-position rotary contactor, good for several tens of amps.
  • A screw-terminal electrolytic capacitor of reasonable quality. I recommend at least a few hundred uF for 3-phase operation.
  • A high-quality, low inductance snubber capacitor for the bridge. Ebay has cute brick-mount 20 uF blocks for $5.
  • One or more high-quality polypropylene capacitors for the tank capacitor. More on this part later.
  • An analog current meter good for several tens of amps.
  • A 3-phase bridge rectifier (or single-phase if you are willing to settle for single-phase operation only).
  • A suitable project case and associated hardware (3-phase breaker, cord, plug, etc).
  • A water pump capable of a couple GPM
  • Tubing appropriate for hooking up the water-cooling.
  • A Variac for testing.

I've got a counter top induction range that I'd like to reverse engineer into something like this, can I use the same schemata?

irondwarf22 days ago

this link will give you a bigger schematic

http://www.instructables.com/file/F20WZQPGQBCHZIY/?size=ORIGINAL

irondwarf23 days ago

have noticed that the photo of the inside of the case the tank coil is multi tapped and there is a toroid by the tank cap that I can see no mention of and the schematic has mosfets whilst the rest of this says IGBTs for stage 2

irondwarf27 days ago

do the ferrite cores have to be that large?, I am having difficulty finding any that big here in the UK

nahshon1 month ago

I've got a counter top induction range that I'd like to reverse engineer into something like this, can I use the same schemata?

nadrvd1 month ago

I have purchased and assembled all of the components as illustrated. The only thing I am having difficulty with are the two small ferrite inductors. Can you please send me the schematics for these?

Thank you.

elricker nadrvd1 month ago

Have a look at this:

http://wiki.4hv.org/index.php/Gate_drive_transform...

Good explaination about using a toroid as a gate drive TXer. It's important info about making this instructable since without it you are likely to lose a couple hundred dollars blowing you IGBT if done wrong. I personally think naming specific toroid types would have been proper for "instruction". I would start with something like : FT-150-J. Maybe bigger and fairly thick. That is a ferrite 1.5 inch O.D.

Wrap it tight, place it near the transistors as he has pictured. That is important. In the schematic he has a series resistor in the first gate drive board so you should not have to place one of your own.

You should not have to wrap more that 15 turns to get the proper signal transfer. No less than 9 turns. That is the "grey area". Too many wraps and it's bad. Too few and it's bad. He hints to 10 windings and that is a good starting place. Trial and error here without a scope could be frustrating. If you try it without one, monitor those IGBT and transistors with low bus voltage for a while to see how hot they get. I would use a variac and no more than 40 volts if it sucks less than 10 amps and adjust for max current draw with the inverter. If it can't handle that you will probably have a little explosion at 240 volts.

elricker1 month ago

About the 2 ferrite coils, my 2 cents.

Since these are basically isolation TX's, and from the hints from how bwang comments and the pictures, I believe he is using CAT5 cable which has 5 sets of 2 twisted wires. And that would be better to have each winding twisted tightly so it makes sense since they come that way.

And I would assume that he is using ferrite only and not iron cores that are of the material best made for the frequency they operate. That would be, I think, FT-xx- J or 77 type cores. You probably can not just use any core since some types of materials will actually "choke" signals at certain frequencies. So you should have the right ferrite to begin with.

Now with lack of detailed info I can only offer help to windings. I would assume that they are 1:1, meaning the primary will have the same amount of windings as the secondaries. It could be a bit more or less. It would be nice to know more about how he did it and I wish to have seen that in more detail.

So I would take the 5 pairs of twisted wires from the CAT5 cable and wind them around the toroid coil about 10 times. Choose one of those 5 pairs and put it to the driver, and the other 4 to the transistors as in the schematic. This is where having an oscilloscope would be handy as well as more info because of the trial and error. You are transferring the square wave signal from the drivers to the transistors. The signal needs to be clean. The wrong coil can cause no function to ringing.

I could be wrong and the windings could be a lesser or more ratio. But it would not be much, on order of . 2 in difference. He might have even wound the 4 pairs of wires first then would the primary over them. I don't know.

If you ever read this bwang, please tell us what core materials you ended up using. It appears you at least tried one other coil that did not end up being in your final pic. And info about the windings@!

Hope this helps.

elricker2 months ago

Bwang, Thank you for the great build. After mulling over your project I have a few questions and considerations.

You explain in short many of the aspects to this project but there are a few details that beginners might not be able to understand and are hard to deduce from the text. May I suggest more detail about winding the toroid cores for gate drives. I think it is confusing. I am sure you left it a little vague becuase they are areas where a bit if trial and error are needed to tune it just right and depends on the core itself. And just to be sure you used strictly ferrites and not powder iron ferrites for the gate drive TXs?

Also I think pointing out the use of ferrite for the main coupling transformer. I have seen builds using type 3 iron cores work but they got warm. Toroids are confusing to newer persons that might want to attempt this.

The schematic is useful but I found differences in it and you pics. The potentiometers are interchanged on the schematic from what is shows later. I think it was the 20k and 50k. And it looks like you used a 10 turn for the pot your mounted control. Just to be clear, which one did you mount on the board and which one on the chassis?

Last thing of question would be layout. Have you experienced any funky signals from placement? I see you mounted (glued), yours very close to the chassis. Was that needed becuase you got bad signals?

I hope you can chuck in a comment back to this. I am sure there are many persons who would appreciate it.

Thanks!

akeem22032 months ago

please, can someone tell me how to wind the "gate drive transformers" to get 8 terminals to drive the mosfet and the IGBT.

chimplost2 months ago

Great project, can you please send me the schematic drawing.

steveazhocar3 months ago
Thanks! They're possibly one of the best made containers of any sort.
Ali Suhail4 months ago
Hi,
Great project, can you please send me the schematic drawing.
thanks,
email - nuggetcreations@gmail.com
shenninger4 months ago
Awesome design. On the final iteration, did you 86 the 4 position rotary switch between the inverter & coupling transformer? I can't find it on some of the pictures or the wiring diagram. Please help me understand!
exenhin4 months ago
thanks
chirume5 months ago
sent me the shematics please
chirume5 months ago
thank you i am interested in this project. can you sent me the schematics.
HoldOnTight6 months ago
Quite impressive! Can you please send me the schematics? Thanks.
Sir Boss6 months ago
Bwang - Great Instructable!!
1) I am looking at the following IGBT:
MG200H2YS1 Specifications at the end of the note. Classic question- will it work for the main IGBT? I have never worked in IGBT land before - can you tell me exactly how this would need to be wired?
2) What is the RF danger from this apparatus? I have seen radio frequency burns and I don't want to play. 65 mH is in the lower range, but it is cranking out some wattage.
3) Is there a pacemaker danger with this apparatus?
A typical microwave oven is running about 35 GH so I really expect #2 and 3 to be minimal. I would like your opinion as someone who works in RF regularly. .
Thank you!!


Isolated Case (Y/N) : Yes
Visolation:2.5kV
Circuits Per Package : 1
V(BR)CES (V) : 500
V(BR)GES (V) : 20
I(C) Max. (A) : 200
Absolute Max. Power Diss. (W) : 800
Maximum Operating Temp (C) : 150C
Thermal Resistance Junc-Case : 156m
I(CES) Min. (A) : 1.0m @V(CES) (V) (Test Condition) : 500
I(GES) Max. (A) : 500n @V(GES) (V) (Test Condition) : 20
V(CE)sat Max. (V) : 5.0 @I(C) (A) (Test Condition) : 200 @V(GE) (Test Condition) : 15
t(r) Max. (s) Rise time : 1.5us
t(f) Max. (s) Fall time. : 1.0us
Package Style : MODULE-var
Mounting Profile Code : M:HL080HW048
jimmy rana6 months ago
dear Sir,
I Like Your Effort but i thing this is too big 30KVA Please send 10KVA if You Can
mekreck547 months ago
Hi... I see in your prints you use 4 smaller igbt's, but in your text you say to use others. could I use the 4 smaller ones for lower voltage? could I use say 4- IXGH28N120BD1, or
IXSH45N120B. thank you...
mekreck547 months ago
Hi.. great project, I just finished a smaller heater (360 watt) but need one that has more power. Would this heater run on 120v ac, and if so could you tell me the requirements for the igbt's modules as for voltage and amps? I have an industrial electric background but am struggling with learning electronics at component level. thank you....
erixpc7 months ago
Would this heater also work on a regular 110v outlet if I only wanted to heat up a rusty bolt loose on a car? I was looking at purchasing the 1000 watt mini inductor II (http://www.theinductor.com/index.php?m=50&s=24) but it would be ideal to build and have a unit that can do both 1kVA on regular 110v with the capability to go up to 30 kVA for forging projects. Are there any parts that need to be changed to make it work on a 110v outlet? What would you do?
clickworried7 months ago
hi My friend please send mi this schematics I cant download very thanks. my email
roastedgang8 months ago
i can use it in one of my projects,
akeem22038 months ago
nice work, Bwang !

1) what is the rated power of the toroidal transformer ?

2) what is the rated or size of the 2 ferrite toroidal for gate drive ?

3) what is the rated amps for the enamel coil for the large transformer ?

4) is it possible to use one large toroidal transformer instead of four ?

5)What is the input voltage and output voltage for the large transformer ?

6) Can i use 600V,200A for the IGBT and get 30KVA output.

7) I hope the inductor is the heater for this work ?

8) how can i connect the water to the system for cooling ?

lastly, can you tell me how to know the rated power for the toroidal transformer ?
mvaziri9 months ago
my email docter_vaziri@yahoo.com
mvaziri9 months ago
hi My friend please send mi this schematics I cant download very thanks. my email
mvaziri9 months ago
hi My friend please send mi this schematics I cant download very thanks. my email
msmith1361 year ago
Would this design be capable of forging metals with a high melting point, i.e. Iron around 1510 degrees C (2750°F). Or steel at around 1370 degrees C (2500°F)? I'm sweating just thinking about the idea....
Hello Friend
Can you please upload a clear wiring diagram for this circuits. i am beginner to this field
if you inform me about this cause I will be thankful to you
my email
lunuwaththa@gmail.com
i saw this and its looks very intersting.
i can use it in one of my projects,
i need your help to build it (i have no experiance in electronics)
i have no problem to pay thru paypal and pick it up
i need it asap.
if someine can help me please contact me
eoberlender@gmail.com
thank you
John48901 year ago
Is there any chance of you making a video of how to put one of these things together? I have a basic understanding of electronics, but this is a little too advanced to know what I'm doing just by reading.
patryxpz1 year ago
Why didn't you use a tank cap on the primary side of the power transformer? First, on the primary side you have smaller current and voltage that on the secondary, so you can use cap with lower nominal voltage and current (smaller cost of cap). Second, with cap on primary side, resonance frequency of tank not depend so much on melting material.
Waiting for replay.
bwang (author)  patryxpz1 year ago
It doesn't matter, since either way the tank cap needs to handle the same amount of reactive power. On the primary side, the current drops, but the voltage increases (since everything is being reflected through the 1:N "reverse" transformer).
patryxpz bwang1 year ago
You are right. But I think that the most critical parameter in this app is current of cap. if it's to large then cap starts overheats, decresing nominal capacity ( incresing tank resonance) and in final it's crash. On primary side you have lower currnet so the problem is smaller. The voltage of cap is not so big problem, its no problem to find snubber cap at 1200V nominal.
bwang (author)  patryxpz1 year ago
It is infinitely easier to find a capacitor that can handle high currents at low voltages than high currents at high voltages, since series'd caps increase ESR (losses) and decrease capacitance.
patryxpz bwang1 year ago
OK. And what about primary wirring?
I see that it is simple wire without water colling and i'am sure that it will be overheat and isolation will be melt.
I'm suggesting also to test this induction heater for longer time period (1hour for example).
(sorry for my bad english :)
bwang (author)  patryxpz1 year ago
Its been run for 1 hour+ and the primary wiring has yet to melt.
patryxpz bwang1 year ago
Did you measure current (clamp probe) and voltage on secondary side? I'm interesting of secondary current, capacitor voltage and inductor voltage at maximum power (10..30kvA). I'm suspecting that the capacitor is overload - too high current than nominal.
Pro

Get More Out of Instructables

Already have an Account?

close

PDF Downloads
As a Pro member, you will gain access to download any Instructable in the PDF format. You also have the ability to customize your PDF download.

Upgrade to Pro today!