Introduction: Linear Power Regulator

Picture of Linear Power Regulator

Most of the times we do not need power supplies which can provide large currents. But when we need them, either we have to buy them or have to make one. Power supplies with high current ratings are very expensive. Further, most of the online circuit diagrams contain power supplies with maximum 1A.

As a solution for these, I worked on a power supply as my university project which can supply up to 3A at a particular voltage. The main advantages are less complexity and low cost. You might have heard about SMPS (Switch Mode Power Supply). But due to the complexity of the circuit, it's hard to build them at our home. Hence I chose linear power supplies.

Let's start.

Step 1: Components

Picture of Components

Collect the following components.

  1. 2N3055 Transistor X 2
  2. 10K resistor X 1
  3. 1K resistor X 1
  4. 560 Ohms resistor X 1
  5. 220 Ohms resistor
  6. LED X 1
  7. 5.6v zenner diode X 1
  8. 100uF capacitor X 1
  9. 470uF capacitor X 1
  10. Fuse Holder X 1

Let's start building the circuit.

Step 2: Diagram

Picture of Diagram

Here I will explain how this power supply works. 100uF and 470uF capacitors are working as smoothing capacitors which help to avoid ripples and to maintain a smooth voltage supply.

Initially, I didn't mention the output voltage of this because we can select any desired output voltage by changing the value of the Zener diode. The output voltage will be equal to 0.6V less than the Zener diode's voltage. As an example, here I have selected 5.6V Zener and the output voltage will be 5V.

Q1 transistor is the driving transistor which helps to regulate the voltage. The Q1 transistor heats when working as the input voltage drops across this. Therefore, a heat sink is needed to remove the dissipated heat.

LED is used to indicate that the power supply is working well.

Step 3: PCB

Picture of PCB

For this circuit, I decided to make the PCB by drawing the paths with a permanent marker as this is a very simple circuit. There are many tutorials on making PCBs, so I'm not going to explain much.

You may notice that there are only 2 pins in 2N3055 transistor. The metal cover of this transistor is acting as the collector pin. So you have to use nut and bolt to connect the collector pin to the PCB. You can notice the 2 points with soldered nuts at the above image.

Step 4: Soldering Components

Picture of Soldering Components

The soldered circuit board will look like this. I don't have many photos to show you the procedure step by step as I captured them after finishing the project.

However, you can notice the black heat sink that I used for the Q1 transistor. It needs to be placed before soldering the transistor. You may use thermal paste between the transistor and the heat sink.

2 wires for the input voltage and another 2 wires for the output voltage are needed to solder to the circuit board.

Now our circuit is ready. You can check the output voltage by supplying an input voltage. The recommended input voltage range is 0-50V and output voltage range is 0-30V.

Step 5: Enclosure

Picture of Enclosure

To make the enclosure I used 2mm acrylic sheet. After cutting and gluing the pieces the enclosure was like in the above image. The size is 10cm X 18cm X 5cm.

The bottom plate is kept separately to fix the circuit board.

Additional holes are created to place the power switch, fuse holder, and power connectors.

Step 6: Finishing

Picture of Finishing

2 Power connectors are used to input the voltage. The positive pin of the input voltage then goes to the power switch and after that goes to the fuse holder. Finally, the output from the fuse holder is connected to the Vcc of the circuit board.

Other 2 power connectors are used to connect the output supply.

The first image shows the power switch and the fuse holder. You may use a fuse according to your requirement. But the maximum value is 3A.

Step 7: Testing

Picture of Testing

Now you can use this bench power supply for all your testings are requirements. The most important thing is the output voltage is very stable in a range of 0-3A.

I have used the lab power supply to test my power supply. The results are very impressive.

You can save money for your other projects with this cheap power supply.

Hope you enjoyed this.Votes for the contests will be highly appreciated.

Thank You.!!!


DamithaN (author)2017-07-10

Obata subha pathum!
Congratulations on your project!

gm280 (author)2017-07-10

If you parallel the output 2N3055's, you can up the current capabilities as well. That is if the supply current can drive it. I would also heat sink the output transistor(s). And you can add a selector switch to change the reference Zenor diode circuits to change the output as well. So many ways to make power supplies. Good project.

tharindusuraj (author)gm2802017-07-10

I was thinking about adding a selector switch for different voltages as you said. But I had to hand over this project according to the given specifications. Thank you for your suggestions. They will be really helpful for my future projects.

About This Instructable




Bio: An electronic engineer. Specialized in drone technology.
More by tharindusuraj:Stabilize Sensor Readings With Kalman FilterDrop an Egg From 20m Height SafelyLinear Power Regulator
Add instructable to: