3D Printed Vertical Ball Launcher

5,830

80

6

Posted in Technology3D-Printing

Introduction: 3D Printed Vertical Ball Launcher

About: For my day job I write K-12 STEM projects for www.sciencebuddies.org. In my spare time I write Instructables.
This video shows a prototype 3D printed "vertical ball launcher" printed in ABS plastic on an UP! 3D printer. It is designed such that when you push down on one side of a lever, a piston on the other side moves up and comes into contact with a ping pong ball, which is then launched into the air.

This was designed with the intention of working 3D printing, CAD and engineering design into a middle school science unit on force and motion with a very introduction-level, qualitative approach to topics like position, velocity, acceleration, gravity etc. At the basic level, the device provides a fun introduction to 3D printing for students and a cool way to launch a ball into the air (and then track its trajectory using a camera), instead of just throwing or dropping the ball. At a more advanced level, students who have been introduced to CAD can modify the source files to try and improve performance - for example, changing the lengths of the levers or the geometry of the piston section. Students can also experiment with different methods for driving the lever - for example, a rubber band or a solenoid connected to one end, or a motor driving the central shaft.

Note how using "puzzle piece" style connectors allows you to print much larger objects than would fit on the print tray in a single run (the UP! has a print volume of roughly 12x12x12cm). The design could be modified to laser-cut and snap/glue together the majority of the structure instead of 3D printing, especially the truss-like supports. With a little ingenuity you could probably laser cut the entire thing, although this would be more difficult for the round parts.

STL files can be downloaded from Thingiverse: http://www.thingiverse.com/thing:98130.

Tips for 3D printing:
  • Cylindrical surfaces will generally come out the highest quality if they are printed with their axis oriented vertically.
  • Some of the larger parts take a while to print on the UP (8+ hours) so it may be easier to start a print job before you to go bed and let it run overnight.
  • You can put more than one part on a print tray at a time, just make sure they aren't overlapping.
  • Note that you will need two of the "pin.stl" part, two "side.stl" parts and one of everything else.
  • I can't guarantee that the tolerances for the snap-together parts will be perfect - this could vary on different printers. If your parts are too big to fit together, you can sand them down or shave off some plastic with a hobby knife. If they're too small and wiggle a bit, you can use glue to secure connections.
  • I printed this on an UP! since I had access to one, but it should work on other similar consumer-grade printers like the Makerbot or Cube (no guarantees though).

This is more of an open-ended design challenge than a step-by-step Instructable. If you're used to 3D printing singular solid objects, this could be a good introduction to printing functional devices with interlocking, moving parts. If you're just looking for a fun physics or engineering challenge (for yourself, your kids or your students), then there is plenty of room for improvement in this design. Either way, have fun - and if you wind up making your own, be sure to post links to pictures and/or videos in the comments section!

Credits: this ball launcher was designed at the Cornell Creative Machines Lab in collaboration with the Curry School of Educationat the University of Virginia.

Share

    Recommendations

    • Woodworking Contest

      Woodworking Contest
    • Make it Move Contest

      Make it Move Contest
    • Microcontroller Contest

      Microcontroller Contest
    user

    We have a be nice policy.
    Please be positive and constructive.

    Tips

    Questions

    6 Comments

    Coooool!!

    Cool! Are you using this in a classroom setting or just for fun?

    Yes, each piece is printed separately and then assembled, but you can still fit multiple parts onto a single print tray (they just have to print separately, not interlocked). On an industrial printer with support material you could just print the whole thing all at once.