3D Printer Cantilever 2.0 C3Dt/c





Introduction: 3D Printer Cantilever 2.0 C3Dt/c

About: Avid 3D printer builder, currently completing my 3rd printer design. If you like what you see and maybe even implement what provide, consider supporting my on Patreon.com: https://www.patreon.com/Core3d_tech

This is my latest completed project to date. I'll be happy to build one for you (see update below), but if you must go it yourself; here is the instructions for the C3Dt/c (c for cantilever) by Core3D.tech. This printer was presented at MRRF2018

It is the culmination of many of my other intructables and I will refer/link to those as needed.

The 3D printer is a Cantilever printer with the following features:

  • 200mmx200mmx260mm Build volume
  • Heated bed
  • Auto Bed Leveling using inductive sensor and Aluminum bed
  • Linear Rails (MGN12 250mm) on both X and Y axis
  • Dedicated Parts cooling
  • Runing KFB2.0/Marlin 1.1.8
  • Bowden Extrusion with MK8 Extruder
  • 8080 Inc 1010/1020 frame
  • Auto tensioning on X and Y Axis
  • Double Rod Lead Screw Z axis using 12mm rods for extra stability.
  • V6 All metal hotend with cooling adapter for Noctua cooling fan (ultra quiet)
  • SD card reader as well as accessible USB port for direct computer access or OctoPrint

All the features you can ask for, in a small and compact build. This printer doesn't just do it all; it looks great doing it.

Here's me chatting with 3D Distributed about the C3Dt/c

Update: As of this morning 5/17/2018, I've received over 10 requests for delivering a fully assembled unit. It was never my intention to start producing these. I will figure out what pricing would apply but be aware, this is my hobby, I could (would want to) only build so many of these.

All the 3D printed parts that are part of this printer are now available as a set on ebay https://www.ebay.com/itm/263704820777

If you are simply looking to get started into 3D Printing, there are many other options available and many cheaper than what I could build this one for (including the rock solid Prusa I3 https://shop.prusa3d.com to which I am not affiliated). So with that out of the way....

If you're patient you can see the entire assembly (down to the last screw) here:

Step 1: Power Unit Assembly

The C3Dt/c printer is built, around the universal 12 Volt Power switching unit. It's important to get the universal one, as it has all the tapped holes in the exact same positions. This implementation relies on those. It also relies on the Power Unit's cooling fan to force air in the controller unit. Granted, this feature is somewhat experimental as the air coming from the unit is not exactly cold. I still hope this offers better than passive cooling of the controller.

12V 30A DC Universal Regulated Switching Power Supply $18.85 on Amazon https://amzn.to/2r52uRt

For this build the C3Dt/c uses a Power Socket Switch http://amzn.to/2E3Shhathat is 10A fused.

You can clamp wires into the power switch using the tightening screws. If you insert wires directly, DO NOT tin them prior. Not tinning them creates better contact, less chance of them coming loose and thus less chance of arcing (with possible smokey consequences). You can also opt for adding wiring disconnects and fork connectors for proper connections to both Power switch and Power/rocket inlet.

Wiring Quick Disconnects http://amzn.to/2CqLyIx

Fork spade wire connectors http://amzn.to/2F8zcrx

The Electronics case is mounted on top of the Cover (the two holes with square caveties under them). Insert 2 square m3 nuts ( https://amzn.to/2HWYm0P ) into the socket and line them up with the holes. They should fit snug but it could help to add some hot glue after inserting for keeping them in place.

Before finishing up, it's probably a good idea to check if the live wire, really is live. Plugged in and turned on, test with a volt meter (if you're wiring live 110V, you really need to own, and know how to use, one). If you mistakenly swap the Live with Neutral, thing will operate as expected but when you turn off your printer (via switch) power is still present.

Before enclosing the Power unit, run the 12V output wires between the unit and the case. They will end up powering the KFB2.0 (out of sight).

If you plan on adding additional 12 Volt features, it could be handy to add 2 spare +/- wires from remaining slots on the Power unit.


Step 2: Printed Parts

This C3Dt/c consists of about 25 printed components. Yes, I get the irony, a 3D printer is needed to create this 3D printer. Been there, dealt with that by creating a 3D printer design that contains no 3D printed parts whatsoever, added, here on Instructables.com: LAMINATED 3D PRINTER (FROM LASER CUT PARTS ONLY)

All printed pieces are available (as a set only) on eBay. I'm going auction style for now as there have been quite a few request. My starting bid is $150 and before you go WHAT???? having this items printed via a printing service will run you over $700. Good luck bidding! https://www.ebay.com/itm/263704820777

As for the printed parts, not all printers are created equal. My printer creates extremely well fitting pieces around all 1010 extrusions. The image above shows weights hanging on one of the clip on pieces that became a bases for many of the parts. Where extra supports is needed, I've added holes that allow a screw and T-nut for adding additional strength. I did design with shrinkage in mind so all parts are fractions of a millimeter larger than in real life.

Print a few test pieces first, to verify your printer gets similar results as mine. There can be minute dimensional differences between the printer available to you and mine. Also there's expansion/shrinkage of melting/cooling plastics that each has to figure out for themselves (again each printer/process/material has it's own quirks).

Parts of this printer can be printed using PLA (especially pieces like the casing) but I personally prefer PETG. For the pieces close to the extruder and hot end, I PLA will not suffice, due to the high operational temperature. You will need to use PETG or ABS for parts like the Extruder holder/clamp and cooling fan bracket.

The image all Printed Parts above shows the orientation of all pieces on your print bed.


See each of the steps that require Printed parts. I've included the STL files there.

Step 3: Z Axis

The Z axis for this implementation is made up from the Linear Screw Double Rail Instructable. Follow the link to that one for more detailed instructions.

The length used for the Z axis is 520mm which allows for a print height of about 290mm (not bad for a cantilever). The minimum length is 495mm but going beyond, allows you to do something extra on top.

I strongly recommend, you use the available screw holes in the Nema Connector and End Connector to screw these components to the rail using t-nuts. The connector can slide up and down depending on pressure applied to them (a failing end-stop may push things out of wack).

The Z Axis design comes with a Z end stop case but since this printer uses Auto bed leveling with a proximity sensor it is not needed.

Before connecting the slider to the Bearing pillows, make sure you drop in 2 10mm (3m) screws through the back of the slider. These will allow you to add t-nuts for extra strength holding the X-Axis.

As for the orientation of the wiring, coming from the Stepper see the image enclosed. For the C2Dt/c Z Axis they point toward the power unit.


Printed Parts (included with this step):

  • Slider12mm.stl
  • NemaConnector12mm.stl
  • EndConnector12mm.stl

Step 4: Y Axis

The Y axis will hold the bed and is based of the Generic Linear Actuator with Built-in Tension Spring

VERY IMPORTANT: Before assembling the entire Y Axis, note that it is attached to the frame with a corner plate. Part 3287 (Triple Slide-in Economy T-Nut) needs to be inserted into the rail prior to putting on the nema and idler ends.

The 1010 extrusion should be at least 292mm. Any longer won't make a difference as the Linear rail on top is only 250mm. It dictates the motion range of the slider.

This Axis will be implemented WITH the built-in End stop (As part of the Nema Connector).

The difference with the Generic Linear Rail is the Linear Adapter (LinearAdapterY-Axis.STL) which is customized to hold the Bed Frame.

As for the orientation of the wiring coming from the Stepper see the image enclosed. For the C2Dt/c Y Axis they point toward the Z Axis.


Printed Parts (included with this step):

  • IdlerBracket1010_GT2_20.stl
  • BeltGrip.stl
  • NemaBracket1010_Endstop.stl
  • 8mmShaftClamp.stl
  • LinearAdapterYAxis.stl

Step 5: X Axis

The X axis will hold the extruder Assembly and is based of the Generic Linear Actuator with Built-in Tension Spring

The 1010 extrusion should be at least 363mm. Any longer won't make a difference as the Linear rail on top is only 250mm. It dictates the motion range of the slider.

This Axis will be implemented WITHOUT the built-in End stop but instead will have a adjustable end stop case.

The difference with the Generic Linear Rail is the Linear Adapter, which will be replaced by the Extruder Clamp (Linear Adapter Extruder Assembly.STL and LinearAdapter Extruder Clamp.stl).

As for the orientation of the wiring coming from the Stepper see the image enclosed. For the C2Dt/c Y Axis they point toward the End-stop case.


STL files (included in this step):

  • NemaBracket1010_NoEndstop.stl
  • IdlerBracket1010_GT2_20.stl
  • BeltGrip.stl NemaBracket1010
  • 8mmShaftClamp.stl
  • LinearAdapter Extruder Assembly.stl
  • LinearAdapter Extruder Assembly Clamp.stl
  • EndStopCase.stl

Step 6: Assembling the 3D Printer: Frame

Now that the Power switch is wired and enclosed, all axis have been assembled, the frame can be put together.

The frame was designed to "wrap" itself around the 12V power switching unit. It's height of 50mm is extremely close to the height of 1020 extrusion.

There are a few 3D Printed parts that connect the Power Switch unit to the frame. These are not necessarily for support or strength but simply to keep the Power Unit and Electronics in place.

The Core support for the Cantilever printer comes from the Corner plates connecting the 1020 (160mm) to both the Z Axis and Y Axis. The 10 Bolts may look like overkill but since this is a cantilever, there's only so many points of support available. The 1020 Rail has two center holes tapped on one.

Please refer to the images on how to assemble the different pieces.


Printed Parts (included with this step):

  • Power To Y Axis.stl
  • Power To Y Axis Short.stl
  • PowerUnit to 1020.stl

Step 7: Assembling the 3D Printer: X Axis

The X axis fits (clicks) into the slider of the Z Axis. It can be an extremely tight fit but that's of course for a reason. This will be the heaviest moving part on the printer and you don't want any wiggle room.

I strongly recommend adding the two m3 hex socket screws (10mm) though the back and adding two t-nut in front to further secure the X Axis.

I've left room between the pillow bearing blocks to access these hex sockets screws for tightening.

Word of caution, once the X axis is inserted into the Y Axis it can be challenging to move/remove. Based on my implementation the distance between the X Axis Nema Connector and the Y Axis slider is 4.5mm. The distance from the NemaConnector and the linear Rail is 69.5mm. Do not deviate too much as you want to reach all 4 corners of your print bed as best you can.

Step 8: Assembling the Extruder and Hot-end

The C3Dt/c uses a bowden type extruder which means the stepper pushing the filament through the hot-end is attached to the frame and not directly to the hot-end. This is done to keep the moving mass of the hot-end to a minimum (especially relevant when printing with a cantilever printer).

For the extruder the C3Dt/c printer uses an MK8 Extruder (https://amzn.to/2I5LdhZ ). Technically it can be any type of extrusion but for this design it does expect to be attached via the nema holes on the nema 17 stepper motor.

The hotend assembly is a V6 (e3d Clone http://amzn.to/2DT17xl ) with added parts cooling and a proximity sensor. I strongly recommend this part is printed with either PETG or ABS for higher temperature tolerance.

I've added an image of the hot-end with it's loose parts. There's lot of pieces there but I think the image speaks for itself.

When you attach the proximity sensor make sure you mount it close to but slightly higher than the bottom tip of the hot-end (at least by one millimeter). Don't mount it too high as that might push the hot-end into the aluminum bed.


Printed Parts (included with this step)

  • ExtruderBracket.stl
  • FanAdapterWithPartsCooling.stl
  • (parts to connect hot-end to X axis part of the X-axis step)

Step 9: Electronics

For the C3Dt/c printer, I decided to experiment, mounting the electronics case over the Power unit's cooling fan. As it kicks in it blows it's air right over the main board and out the electronics case. It's not exactly active cooling as the air might be warmed up a bit but I believe it might beat passive cooling (no fan on controller at all).

I've not not witnessed any skipped steps or overheating which seems to indicate this is working well.

Keeping the printer compact makes the process of packing all of the electronics inside the case a bit of practice in patience.

For a clean look I've decided to use the Expandable Braided Sleeving (http://amzn.to/2C3sbJZ ) to keep all wiring together.

The large hole at the bottom of the electronics case fits right over the fan exhaust from the power unit. The small hole is to keep all the wiring coming into the case together.

I found it useful to first get all the wiring through the small hole leading them to the bigger compartment to subsequently slide the controller board behind it.

Note: The ventilation slots on top and at the front of the case are very fragile. It works but thin "spokes" break easily. I probable need to re-design this in a way were I can orient the print differently for stronger ventilation holes.

The orientation for the controller speak for itself. The "chips" all point downward and the usb port slides into the square opening at the front of the electronics case.

For the specific wiring of the KFB2.0 I refer you to the instructable WIRING THE KFB2.0 3D PRINTER CONTROLLER
It, in turn refers to an article I wrote on my blog on how to wire the Proximity sensor at core3d.tech


Printed Parts (included with this step)

  • ElectronicsCase.stl

Step 10: LCD and SC Card Reader

The C3Dt/c uses a 12864 LCD display with built-in SD Card reader. The case kind of speaks for itself. the LCD fits exactly inside the case and is tied down with 4 m3 6mm screws.

The back of the case has two openings for the 2 ribbon cables that connect the LCD to the KFB2.0


Printed Parts (included with this step):

  • LCDCase.stl
  • LCDLid.stl
  • LCDKnob.stl

Step 11: Bed Assembly

The bed carriage for the C3Dt/c is 3D printed which was done purely out of necessity. Ideally you'd want a metal (rigid) frame that is thin. I could not find a 220x220mm metal frame that had screw holes for linear rail block.

The linear adapter on the Y Axis has a large surface to receive the bed frame. Make sure this is smooth. Even the smallest bumps can slant your bed.

For the bed itself I recommend a combination of a aluminum 200mmx200mm (219x219 in actuality) with a silicone heating pad. There's a kit available on ebay at 3D Printer RepRap V2 Aluminum Heated Bed Build Plate /w 12V 200W Heater Full Kit

it comes with scews, bolts and rubber inserts to separate carriage from bed. The bolts will be replaced with regular m3 bolts that will fit inside the sockets underneath the carriage (they should fit snug, but if they fall out, try some glue on the outside of the bolt before inserting).

First, attach the carriage with 4 hex socket scews to the Linear Adapter on the Y axis.

Cut the rubber rubber tube to get 4 piece approximately 5-10mm and place (balance) those on the carriage. Next put the Aluminum bed with attached silicone bed (wires pointing towards the back) on top of the rubber connectors and insert screws.


Printed Parts (included with this step):

Bed Carriage Printed : Bed Carriage.STL (attached)

Step 12: Material List Full

Following is the list of parts used, with links where to get them. I am an Amazon affiliate and if you order through the links below you do end up supporting me with a few dollars (generally, enough to buy new Filament at the end of the month).

You will be able to source many of the items cheaper directly from China via outlets like AliExpress but it will take time and patience to get them.

8020 Inc Aluminum extrusion (you can get used extrusion on eBay but there's no gaurantee for exact 90 degree angles). I also had some of the items pre-tapped.

I note about links to products. I'm an affiliate with Amazon so where possible I put out links to Amazon.com for 8020 product. Prices on Amazon prime are pretty much in line with direct sales at 8020.net:

8020 Inc.




For items purchased directly from 80/20 Inc, consider shipping charges (my orders have been $13.99 shipping/handling) (shipping is included in most Amazon sourced items).

Step 13: Conclusion

I set out to build a Cantilever printer based on a set of universal actuators I designed. I ended up with a 3D printer with all the features the big boys offer (including auto bed leveling). As promised at MRRF2018 the design is now available for all.

The C3Dt/c (Core3D.tech cantilever) is a compact and in my opinion not just functional but also aesthetically pleasing.

Total cost with items sourced from the US lands between $500 and $600.

This instructable should offer you all the steps in recreating this printer. If you're in need of the 3D printed parts, shoot me a message and I'll look into making these available.

In the next few weeks, I'll be adding instructional videos for each step, so come back and check it out.

Here it is at work

BTW, if you like what you see and maybe even implement this instructable, consider supporting me on Patreon.com: https://www.patreon.com/Core3d_tech . It took many hours and about as many discarded prototypes to design. Every bit help. Thank you in advance.

Make it Move Contest

This is an entry in the
Make it Move Contest



    • Make it Move Contest

      Make it Move Contest
    • Woodworking Contest

      Woodworking Contest
    • Microcontroller Contest

      Microcontroller Contest

    We have a be nice policy.
    Please be positive and constructive.


    8 Questions

    Is there an email list fro when you are able to begin selling the parts...I would enjoy build this next, I am completing my 36"x29"x12" CNC machine and this would be a nice project to take on... please let me know

    Hi! I really like the look of this printer!

    Instead of building printers to order (which I understand you may be overwhelmed with at the moment), how about just selling the 3D-printed parts? For many of us, those are the stumbling blocks to making this printer ourselves.


    Hi there, really interesting. Which software do you use to connect your printer? Thank you.


    Thx, unless I connect OctoPrint (on a Raspberry Pi) to the printer, I really don't connect to it. The printer reads the gcode from either an SD card (that is inserted in the LCD unit), or I upload it to my OctoPrint server.

    For slicing the models I use either Slir3r (1.3.0 Dev) or Cura 2.7.0 which are both free slicers.

    For any code updates to the firmware I use the Arduino IDE.

    Hi there! Love the printer and tutorial. You mentioned at the beginning of your tutorial that "I'll be happy to build one for you", could you tell me if that's still the case and, if so, how much would you charge and how long would the order take from the time is placed until is delivered?




    Thank you. Don't forget to vote for the contest at the bottom of the instructable ;-).

    I will have to change that line as, as of this morning, you and 10 others have requested the same. I'm a hobbyist and never intended this to be a business. I have to figure out pricing and delivery in the next couple of days. There's only so many of these I could build within a month. If you're still interested a week from now check out Step 1 again and I will try to provide some information on custom builds and delivery.

    1 more answer

    Sounds good. Thanks for the response.




    Hope this isn't to much a bother, I was wondering what program you used for all the planning, drafting, designing and 3d renders?

    I've been trying to find a interface/newbie friendly 3d program that offers things I mostly see on CAD like programs such as really precise measurement tools/snap-grids.

    Edit: Ah found part 1 of my answer, as per the 2nd reply by Core3D to Jimmb53, the models were apparently done in Fusion 360.

    I'll go take a peek at that, if anyone else knows of "friendly to learn/use" 3D programs with good grid/snap/mesurment tools/options please feel free to "answer" with suggestions.


    I am a complete newbie to the 3D print arena. You have provided STL files for printing the parts in the various steps, yet your statement:

    "This C3Dt/c consists of about 25 printed components. Yes, I get the irony, a 3D printer is needed to create this 3D printer. Been there, dealt with that by creating a 3D printer design that contains no 3D printed parts whatsoever"

    Do I have the STL parts printed? or you also suggested making laser cut parts available on Ebay? So, please excuse my ignorance but for an optimum positive experience which is the way to go and briefly why?

    Thanks for you patience



    Welcome to the 3D print arena. You're gonna have to bear with me as I this thing just went viral and I'm getting more requests for parts and builds than I ever imagined.

    Since you're new to the 3D print Arena, I have to ask, do you really want to build a printer from scratch (It's what I love most about the 3D printing realm but it's not for everyone)?

    When you talk of the full experience, are you looking for the experience of building something like this or for the experience of 3D printing? If it is the latter, there are many "ready to go" options out there.

    I'm going to need the next couple of days to work out pricing and options for buying parts,full kit or semi assembled kit.

    3 more answers


    The answer is yes, I do wish to build the printer and begin to understand all the particulars involved, the requirements and variables in creating successful parts printing. My hobby is designing Motorcycle frames and the welding required in that arena. I find 3D printing intriguing and want to understand the minutia. But as with anything the tolerances are important and as you explained in the article these differences are important. We will now working in MM and not in Inches and I cannot fire up a torch and reheat the metal. I am learning Fusion 360 and want the complete experience. So, using your experience is something I do not need to learn by my mistakes. That is why you take a welding course...



    Well, then you are in the right place. In the next couple of days I'm going to figure out how to best offer the 3D printed parts and at what price. It will probably be through eBay. I will provide a link as soon as I get that up. As for Fusion 360, this printer was designed using Fusion 360. If you're interested, you can check out my GrabCad account at https://grabcad.com/core3d.tech-1 You'll find some of the Fusion 360 models associated with this printer.

    the best way to keep informed is to follow me on twitter @Core3D_tech I will tweet when I have figured out the logistics.


    Thank you for all the information. I look forward to the next steps with this printer. I take it from these comments, it would behoove me to wait for the Laser cut parts as opposed to actually sent the STL files out to a service to be printed.

    I will keep watch on this site since I am opposed to twitter and the trolls that tends to make news on that site.

    You quote the build volume as 200 by 200 by 260 but do not specify what units you are using. What is the build volume?


    Sorry, too emerged in 3D printer world where all units are millimeters. 200mmx200mmx260mm 7.9"x7.9"x10.23"


    My compliment. May ask you if you consider to extend the build to a double extruder printer? Did you evaluate the precision and accuracy of the printer?

    TIA Eugenio


    Thank you.

    In all honesty I'm not a big believer in the dual extruder. There's too many downsides to having to nozzles exactly at the same height. I'm looking forward to the development (and already available upgrade) by Prusa https://shop.prusa3d.com/en/printer-upgrades/185-m...

    The other limitation with this printer would be the exact linear rail length to bed ratio. There is no wiggle room beyond each corner of the bed. adding another nozzle would seriously cut into the print volume on the X-axis.

    Not sure how you would measure accuracy and precision. It prints pretty awesome prints but never forget this a cantilever printer. It is much more susceptible to vibration than a fully caged printer.


    oops.. found it lower in the comments.
    what's your general lead time and how do we're get the printed parts of they are not part of the price?

    Nice project. However, as you point out, you need a 3D printer to do this build. Failing that, so you link to a 3D printer from laser-cut parts. OK, so what does it take to build the laser cutter? "This is the house that Jack built" ;-)

    3 replies

    Or just use a print house like Shapeways or others...

    Is there any advantage of this kind of Cantilever printer comparing to other cartesian printers? ?

    1 reply

    People like the look and It's more compact than traditional printers. This was actually a challenge to me to get it to work good with a 200x200 bed. Most commercial Cantilevers are limited to a 120x120mm bed.

    I have an ANET A8 and it makes a great paperweight. Can't figure out why it freezes up mid print and the head keeps leaking even after tightening it up. Any suggestions or are you planning to do a real DIY upgrade for the ANET A 8. There are thousands of us that would like to have it reach its full potential. Personally, I'd just like it to work. Just a suggestion.

    1 reply

    Sorry to hear that. There is a huge ANET following so they may some answers. There a trick to tightening the hot-end. It needs to tighten itself against the throat tube and not the block itself

    As for quiting at the middle of a print that may indicate overheating of the steppers. That however could be for a million of reasons.

    I personally have never bought a 3D printer s as I get more fun out of designing them myself. There's gotta be something out there on the ANET. Like you said, they have a huge following

    Good luck.

    Thank you!! Come back soon and see the entire assembly (down to the last screw) animated in Fusion 360.

    close to $600 (not including printed parts)

    Merci pour tout
    spécialement pour les liens

    Thank you
    Specialy for all the link

    Nice DiY

    1 reply

    Je vous en prie, merci beaucoup

    Bravo! Beautiful design and implementation. Actually, a work of art. Can't imagine the man-hours that went into this, especially considering the numerous prototypes you mention.

    1 reply

    Thank you, I really appreciate that. I was going for something with a sleek look to it. It is a work of love and yes many hours. I'm currently working on an assembly animation that breaks the C3dt/c down to each screw. All of this is teaching me about design of not just the physical but also the Fusion 360 Modeling (and now animation). Look forward to that.

    Awesome build. I'm seriously planning to build one.

    A minor comment to improve your instructables. It looks to me that stl file for step 10 is missing.