If you're like me, you know how annoying it is to use up 9V batteries on your guitar effect pedals.  Its wasteful, and brand name 9V's are almost $9 for a two-pack.  If you forget to turn off your pedals you've thrown away big bucks.  Its an extreme waste of money when you can build your own power supply for only about $25.The power supply I designed and built delivers steady, regulated 12 volts, 9 volts and 5 volts all at the same time.  Each voltage has two outlets, but they can be "daisy chained" with a custom cable to connect many more pedals.  The styling is an homage to the old days of vacuum tubes, when components generated so much heat they needed to be on the outside of the casing instead of inside.  I used some gigantic capacitors that I thought would look cool, other than that they are major overkill. In this Instructable I am going to assume that you know some basic electronic skills and know what I am talking about when I say capacitor, resistor, LED, transformer, AC and DC, etc.  There are lots of introductory electronics Instructables and soldering Instructables you can check out if you'd like to gain a better understanding of basic electronic principles and components.IMPORTANT NOTE:  Depending on what pedals you intend to use this for, you should take care to wire the DC connectors as pin-positive/ring-negative or pin-negative/ring-positive.  The latter is the industry standard way of doing it, although it poses issues when building a pedal that has a metallic housing.  I prefer pin-positive/ring-negative because of that issue, and I wired this supply in this way.  Please take care as to which way you wire the power supply to prevent damage to your pedals.

Step 1: Planning and Schematic

The first thing to do is design the circuit.  Many guitar pedals and stompboxes have 9V DC power jacks on the back (if your's doesn't and you're feeling ambitious, you can add your own) which we will use to power them instead of the 9V internal battery clip.

The schematic I designed can be modified for whatever voltages you would like.  For example, if you don't have any 5V pedals, you can just swap the 5V power regulator for a 9V regulator, and now you'll have double the 9V power.  

The schematic uses a simple power supply circuit converting AC to pulsating DC, smoothing it with capacitors and running it through voltage regulators for fixed DC outputs.

Here is a higher resolution version of the schematic if you can't read the one below very easily:


<p>is this an isolated power supply or is that a whole different game?</p>
Totally different game. Isolated outputs require each output to have an isolating DC/DC converter (expensive) or a specialized transformer with many isolated output secondary windings (very expensive). With properly grounded cables, using an unisolated power supply shouldn't be a problem. Most retail units are not fully isolated either.
<p>Hi Matt, I was wondering what made you choose the DC/DC converter that you did as I'd be interested to find the 6V and 12V converters as well? Also, as the min input voltage on the converters is 10.8, does that mean the circuit needs different regulators to feed the higher input requirement of the converters? Or, do the converters replace the regulators?</p><p>Thanks for the help!</p>
<p>The DC/DC converters replace the regulators, they basically just regulate the voltage but in a more efficient way. Some also feature isolated outputs. The unregulated DC from the rectifier and capacitors just needs to be within the module's input range.</p><p>If you're interested in the isolated power aspects, you can also use the converters and just hook them to an off the shelf DC power supply. One like the one below will give isolated 9V from 5V DC from a wall adapter.</p><p><a href="http://www.digikey.ca/product-detail/en/PDS1-S5-S9-D/102-3024-5-ND/4006992" rel="nofollow">http://www.digikey.ca/product-detail/en/PDS1-S5-S9...</a></p>
<p>Awesome project!!! and very clear directions<br></p><p>I am trying <br>to make a mod based on your design. In sum, the project is an attempt <br>to replace a mess of wall warts(photo1). It REQUIRES isolation, as I have many <br>different synths/effects that all run through loopers(photo2/3), so any extra <br>noise compounds really quick. Many use different volts/amps, so it is <br>unlike a standard guitar pedal board that uses uniform-ish pedals. The <br>outputs needed are:</p><p>(4) 4.5V, 1A, pin positive (kaossilators)<br>(2) 9V, 1.7A, pin positive(kaoss pro, korg wave mini)<br>(1) 9V, 1A, pin negative (boss rc-50)<br>(1) 9V, 300ma, pin positive (roland midi splitter)<br></p><p>(1) 12V, 400ma, pin negative (TC helicon)<br></p><p>(1) 12V, 700ma, pin positive <br></p><p>From my limited understanding, I feel it is easiest to use a computer CPU (or similar) and run a DC/DC converter (<a href="http://www.digikey.ca/product-detail/en/PDS1-S5-S9-D/102-3024-5-ND/4006992" rel="nofollow">PDS1-S5-S9-D</a><br> or similar) off the 12v or 5v rails, using one converter for each <br>desired output. This would be done in parallel (correct?). I would <br>prefer to run ALL off the 12 volt rail, because at some point I would <br>like to power this off a portable car battery(and make the whole unit <br>portable). If possible, I would also like to fit all the components onto the board <br>that the synths are mounted to (photo 4/5). I plan to leave the CPU<br> on the ground to reduce EMI noise. Ideally, one cable will connect from CPU to the board, which will have all the circuitry to step down power, reducing the number of plugs I have to undo/redo every time I take this setup out for gigs</p><p>I am only unsure if this <br>will yield the proper results, be safe for my components, and not tax <br>the power supply(or find one that is well equipped to run all this). Also fuses will be required. Any insight you can <br>provide here? </p><p>Again, <strong>the focus is</strong>: power isolation, EMI reduction and <br>portability/form factor. Cost and time are not factors, unless we are <br>talking on infinite scales :)</p>
<p>also, how does one achieve the isolation effect of these converters for outputs that need 12 volts (and thus don't need to be stepped down)?</p><p>Bonus: I also have a behringer mixer that has a (2x 18.5v, 350ma) wall wort I would like to replace. But that is a less straight forward job of soldering the connector. </p>
One of these per output could be used to make a isolated supply. Cost could probably be about $20 + extra $6 per output.<br><br>http://www.digikey.ca/product-detail/en/PDS1-S12-S9-S/102-3012-5-ND/4006980
<p>Great build Matt, thanks.</p><p>On your photobucket feed, there is an effects pedal with a tube installed on it. What is that, and could you share how it was made?</p>
Here's the forum about it. Hopefully these tubes can still be found. They don't glow, by the way.<br><br>http://www.diystompboxes.com/smfforum/index.php?topic=70533.0<br><br>As I was writing this I realized you said &quot;tube&quot; singular, not plural. If you're referring to the single 12AX7 tube on a box, I don't remember what that pedal was. It never worked properly and I still have it sitting here, gutted, waiting for some kind of circuit. There are a lot of 12V 12AX7 based distortions/crunchers on the net though so you won't have a hard time finding one if you're looking for a tube-based pedal. They don't sound as great as you'd imagine. They do look neat though. Since then I've stuck to tubes for HiFi only (and a modern fender tube amp which I don't dink around inside)
<p>This is very cool and I thank you much for it's creation.</p>
Thanks. Great Instructable. I took the same schematic and same idea, without the project box, and mounted it to the bottom of my pedal board I made! Check it out...<br><br>All six DC cables are 9v, and I put two through each hole in the board, for maximum movability.
Nice job, looks great
<p>Hi Matt, I am a little confused on the parts. What are those two large cylinders on top of the whole power supply box. (Blue and Red on computer graphic)</p>
<p>Actually only blue on the computer graphic. still same question</p>
Hi there, sorry for the delayed response, the Instructables email system seems to have broken until just today.<br><br>Those are large capacitors sticking out of the case. They are like that only for cosmetic reasons, they are much larger than the circuit requires. Feel free to use a lower value like 1000uF, they will be much smaller.
hi sir mat, i made power supply based on your schematic. i used a 18 0 18 @1amper transformer, but when i tested it, the output from both 3 regulators was uniformed @ 19 - 20vac. where did i go wrong.? how should i fix it sir.? tnx.
You should have no AC voltage at the output of the regulators, only DC voltage. Check the pinout of your regulators to make sure they are wired correctly, also make sure your bridge rectifier/rectifier diodes are correct because you should not have that high an AC voltage if you have the rectifier and capacitors in place.
<p>an easy way to get the power for pedals is to buy a cb regulated power supply then turn the regulator voltage down to 9 volts..might be a variable pot or a resistor change..simple ...im getting a bit of a chuckle at how many guys are tring to complicate the issue....its a very simple problem to get around</p>
<p>Hey Matt, I've followed the schematics, and wired everything up accordingly. Thanks a lot for the comprehensive instructions !</p><p>I'm facing a small problem though: when I check the voltage from each port, they all produce -9V DC. However, once I use a port to power my pedal, something seems to eat all the current up. My pedals are regular, 9V, and draw 14-19mA. What do you think could cause this?</p><p>Interestingly, when I try plugging in a cheaper pedal, it works just fine.</p>
<p>sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v? </p>
There is a way to use a center-tapped transformer without getting too high a voltage if you just ignore the center tap. This is done with a full wave rectifier as shown here:<br><br>http://savedonthe.net/image/1761/full_wave.png<br><br>Just replace the bridge rectifier in my circuit with two diodes to make a full wave rectifier as shown.
<p>hi sir in your diagram where did you put the the two 1000uf volts capacitor and 3 10 uf 63v because in the diagram only 100uf numbers no voltage included sorry sir im a newbie -_-</p>
<p>because i count all the capacitors in the diagram there are 6 and the one i saw in your pictures is only 5 can you plase create a diagram that shown all the name of capacitors thank you sir for all the help</p>
<p>The value and quantity of the capacitors really isn't that important, what is important is where they are located and that the voltage rating for them is higher than the maximum voltage they will be subjected to. Subjecting a capacitor to a voltage higher than its rating can and will cause it to burst or explode. Just google this to see why you don't want this to happen.</p><p>Capacitors after the rectifying diodes (before the regulators) and after the regulators (a requirement stipulated in the 78xx regulator datasheet) is all you need. If you have major noise problems being caused by the power supply after it's built, I would suggest to add some more capacitors in parallel with the existing ones to help smooth out the voltage. </p><p>The 10000uF capacitors are oversized. They are functional but their huge value is partly cosmetic. Feel free to substitute a single 1000uF if you'd like, there shouldn't be any issue.</p>
<p>More info if you want to learn about it</p><p>http://www.daenotes.com/electronics/devices-circuits/center-tapped-full-wave-rectifier</p>
<p>sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v? </p>
<p>Dude. I want to have 9v 8 outputs. What should I do? I already get it in replacing the other 12v and 5v regulators with 9v one. How to add another 9v in the circuit? Thanks</p>
Just add some more regulators and capacitors. If you add one more (4 total) you can put two pedals on each and have your 8 outputs.
<p>ahhmm, i dont get it. im sorry, you have used 18v transformer right? so, i will remove the transformer there in your tutorial and replace a transformer that can work at 220v ac? im sorry man, i am confused.. by the way im from Philippines. we have 220v ac here</p>
Sorry I misunderstood. I thought you were asking how you could do this without a transformer at all. The transformer outputs 18V but takes in 110V AC. Plugging a 110V transformer into 220V will cause the output to be 2x higher, but you will be able to buy a 220V to 18V transformer there in the Philippines. The input and output are referred to as &quot;Primary&quot; and &quot;Secondary&quot; coils, which will be rated for 220V and 18V respectively.
<p>Hi.. So can I replace your transformer with 220v AC with 18v AC secondary rating?</p>
<p>Yep, that's the way.</p>
<p>man, thanks for this tutorial. but i live in a country which i get a 220v ac., what can i do if dnt wanna use transformer? thank you. im a newbie in electrnics. </p>
You have to use a transformer. There isn't any practical way to make 9V DC from 220V AC.
<p>Huh? Of course you can do it with a Zener diodes. E.g., please read this: http://www.designercircuits.com/DesignNote1a.pdf The other question is that it is not always that safe and if you have crappy jumping power, then all your pedalboard might puff in smokes, once you use Zeners at the limit. Transformers are just nicer and safer.</p>
<p>I would never suggest someone not use a transformer for this kind of thing, especially for 220V AC. Not just for safety reasons, but for practical reasons too. If you do the math on a zener regulator circuit, the voltage drop resistor would need to dispose of more than 10W of extra power to get 50mA on the output, enough for only one or two pedals. Also, he says he is new to electronics, which frankly means he really shouldn't be messing around with 220V AC without the knowledge of how to be safe. Transformer or no, 220V AC is dangerous.</p>
So with that transformer you can only use 300ma worth of pedals correct?
Pretty much. Won't be hazardous to go over that a little bit though.
Or do you get more since you're dropping to 9v?
<p>is it a problem if you live in a country where you get 230 volt ac out of the power outlet?</p>
No, you just need a transformer which has a primary rated for 230V AC and a secondary rated for 9V AC. Some transformers can be wired specifically for 115V or 230V, but probably most cannot.
<p>what about SMPS?</p>
<p>An SMPS would work but the concern is that the SMPS high frequencies will cause noise and high frequency sounds.</p>
<p>Wouldn't a 230 &ndash; 12 VAC work too? And would the LM7809's be able to operate at all if the secondary was 9 volts? &ndash; The datasheet specifies a minimum input voltage of 11.5 volts.</p>
<p>It would, just that the more excess voltage you have at the unregulated DC stage, the more heat the regulator is going to generate and the less current you will have available at the output. Because the transformer current rating is selected to be higher than the current that is actually going to be used, it will be higher than 9V. The rectified and smoothed output voltage of a 9V secondary, with no load, t is probably 14-15V. Using a higher transformer rating would just produce more voltage the regulator will have to waste.</p><p>The dropout voltage in the datasheet is 2V @ 1A, but 1A is the maximum current for the part. It would probably take 8 typical pedals on one output to use that much current. The dropout voltage is lower at smaller current levels. A part like the TI LM2940CT-9.0 is an improved linear regulator design that only has a dropout of 0.5V @ 1A. It is pin compatible so it can replace the generic 7809 directly.</p>
<p>Thanks for the informative answer; exactly what I needed to know. :)</p>
<p>what will i do so that i'll have eight 9VDC outputs? </p>
Multiply the regulators and output capacitors to get as many outputs as you want. For 8 outputs I would recommend at least 1A @ 9V transformer output current.

About This Instructable


299 favorites


More by mattthegamer463: DIY 6x17 Panoramic Film Camera Pentax Spotmeter V Repair Mechanical Wind-Up Star Tracker for Astro-Photography
Add instructable to: