Picture of Build A Power Supply For Your Guitar Pedals
DSC01192 (Medium).JPG
If you're like me, you know how annoying it is to use up 9V batteries on your guitar effect pedals.  Its wasteful, and brand name 9V's are almost $9 for a two-pack.  If you forget to turn off your pedals you've thrown away big bucks.  Its an extreme waste of money when you can build your own power supply for only about $25.The power supply I designed and built delivers steady, regulated 12 volts, 9 volts and 5 volts all at the same time.  Each voltage has two outlets, but they can be "daisy chained" with a custom cable to connect many more pedals.  The styling is an homage to the old days of vacuum tubes, when components generated so much heat they needed to be on the outside of the casing instead of inside.  I used some gigantic capacitors that I thought would look cool, other than that they are major overkill. In this Instructable I am going to assume that you know some basic electronic skills and know what I am talking about when I say capacitor, resistor, LED, transformer, AC and DC, etc.  There are lots of introductory electronics Instructables and soldering Instructables you can check out if you'd like to gain a better understanding of basic electronic principles and components.IMPORTANT NOTE:  Depending on what pedals you intend to use this for, you should take care to wire the DC connectors as pin-positive/ring-negative or pin-negative/ring-positive.  The latter is the industry standard way of doing it, although it poses issues when building a pedal that has a metallic housing.  I prefer pin-positive/ring-negative because of that issue, and I wired this supply in this way.  Please take care as to which way you wire the power supply to prevent damage to your pedals.
Remove these adsRemove these ads by Signing Up

Step 1: Planning and Schematic

Picture of Planning and Schematic
The first thing to do is design the circuit.  Many guitar pedals and stompboxes have 9V DC power jacks on the back (if your's doesn't and you're feeling ambitious, you can add your own) which we will use to power them instead of the 9V internal battery clip.

The schematic I designed can be modified for whatever voltages you would like.  For example, if you don't have any 5V pedals, you can just swap the 5V power regulator for a 9V regulator, and now you'll have double the 9V power.  

The schematic uses a simple power supply circuit converting AC to pulsating DC, smoothing it with capacitors and running it through voltage regulators for fixed DC outputs.

Here is a higher resolution version of the schematic if you can't read the one below very easily:

Step 2: Parts and Tools


- 5" long by 2.5" wide by 1.75" tall project box

- Segment of stripboard, veroboard (it's like perfboard but the copper is in strips, see pic)

- 7809 (9v) and/or 7812 (12v) linear voltage regulator(s), depending on the voltages and configuration you want

- 18V Transformer

- Bridge rectifier

- IEC Power connector

- Two 10000uF 50V capacitors (less overkill version: 100uF)

- Three 10uF 63V capacitors

- Toggle switch

- Green LED

- 5mm LED holder

- 220 ohm resistor

- Fuse holder

- 100mA fuse

- Six 2.1mm DC jacks

- Six 2.1mm DC connectors

- Adhesive rubber feet

- Wire

- Solder

- Assorted nuts and bolts

- Small segment of aluminum

- Masking tape

- Electrical tape


- Drill and bit set

- 1 1/4" hole saw bit

- Hot glue gun

- Soldering Iron

- X-acto knife

- Wire strippers

- Wire cutters

- Square

- Ruler

- Flat file

- Vernier

- Multimeter

Step 3: Drilling and Cutting

Picture of Drilling and Cutting
DSC01148 (Medium).JPG
DSC01150 (Medium).JPG
DSC01152 (Medium).JPG
IMAG0073 (Medium).jpg
IMAG0074 (Medium).jpg
Short version: 

Cover in masking tape, mark hole locations, drill pilot holes, drill appropriate sized holes using pilots as reference.

Long version:

I did the layout freehand, marking the middle of the box using the square, and just measuring and sizing up locations using the components.  To make it easier to write on the box, cover it in masking tape.  Use a sharp pencil so that you can get accurate markings and can erase if you make a mistake.  Take your time and get it right, theres no turning back once you start drilling.

Use a  1/8" or 3/32" drill bit to drill pilot holes at each hole marking.  For the IEC connector hole, drill in each corner of the rectangle.

After I drilled pilot holes in the corners I used a 1/4" bit to drill around the perimeter of the rectangle, being careful to not pass over the edges.  Then, I used some pliers to snap the remaining plastic out of the center, and used the flat file to file it into a rough rectangle.  Keep filing and test fitting the connector until it fits snugly.  Be careful with IEC connectors that have pop-out flanges to lock them in place, since those are most likely designed for metal enclosures and thick plastic may prevent them from locking in place.  I had to switch for a connector that had mounting screws because of this.  Once the connector is in place, you can drill holes for screws or bolts/nuts with no problems.

The rest of the holes will need to be drilled appropriate to the bolts you've selected for mounting your transformer and the diameter of your capacitors.  My capacitors were 30mm diameter, so a 1 1/4" drill (about 32.5mm) worked great.  The diameter of most DC jacks is about 8mm, but check with a vernier before you drill.

The aluminum plate that goes over the DC jacks is 4" long by 1" wide.  I used a 5/16" drill bit for the holes on it, spaced 5/8" apart.  You can use the bastard file to remove the sharp corners, and some 120 grit sandpaper to smooth the edges and give it a brushed look.  I used 4.40 threaded hex head screws to secure it in place.

Step 4: Circuit Building

Picture of Circuit Building
DSC01146 (Medium).JPG
Short version: 

Build the circuit, remember to cut the rails on your stripboard to separate segments.

Long version:

 Now that the chassis is sorted out, the next phase is wiring up the circuit board.  Measure the inside of the project box and determine how much room you can use for the circuitry.  I used a piece about 2" by 2.5" and it fit great and was still easy to populate with components.

If you don't get a pre-cut piece of that size, the easiest way to cut it without using power tools is to score the edge to break it at with the x-acto knife, then break it over the edge of a table, holding both sides of the break firmly.  You may need to break off more than you want with the first break.

To cut the traces on a stripboard, you can use a drill bit held in your hand and just turned into one of the holes until the metal is scraped away and broken.  A close-up picture below shows the result.

I didn't have a plan going into this, but I basically just set up + and - rails and lined up the regulators on them.  The regulators all use the input voltage from the transformer (18V AC ends up being around 28V DC) and common grounds, so they can be placed in a line, and then the output pin connections can be cut with the drill bit.

I wired the large capacitors off-board because I wanted them to protrude from the top of the chassis, and they just take up too much room on the PCB.  

Solder the 220 ohm resistor to the LED.  Then solder wires to the resistor and LED and connect the positive wire of the LED (the longer leg) to the output of the 5V regulator and the negative wire to any negative point on the board.  

Testing the circuit is difficult, so just triple-check that everything is correct.  Before you turn it on use a multimeter to check for shorts between ground and the input voltage, and check each output voltage with the input voltage and ground to make sure nothing is shorted out and would cause damage. 

Step 5: Assembly

Picture of Assembly
DSC01203 (Medium).JPG
Short version:  Put it together.

Long version: The best components to start with are the DC jacks.  I used hot glue to hold them in place because the threaded portions weren't long enough to reach through the plastic and the aluminum and still have room for a nut.  Make sure that they are all aligned straight ( I messed this up) so that they will be easier to wire up.  Use lots of hot glue to make sure they won't get pushed in when being plugged into.

Next, install the transformer, fuse holder and IEC receptacle.  Use nuts and bolts for the IEC and the transformer, and use the nut supplied with the fuse holder to fasten it in place.  Also put the toggle switch in place so that you can wire up the AC portion of the circuit before the big caps and board get in the way.

That being said, now is a good time to wire up some more of the circuit.  Solder one wire from the primary (120V) side of the transformer to one of the locations on the back of the IEC receptacle.  The two that are next to each other are the Live and Neutral, the other lower one is the Earth which we won't use since this is a plastic housing.  Connect the other wire from the primary side of the transformer to the fuse holder, then solder a wire from the fuse holder to the toggle switch, and from the toggle switch back to the remaining connection on the IEC receptacle.  The chain should be:

IEC -> Transformer -> Fuse -> Toggle switch -> Back to IEC

Now that those are in place, put in the circuit board and caps.  To affix the capacitors, I put a zip tie around each one, and then rested them inside on the zip tie, and glued them in place.  

Step 6: Assembly Continued

Picture of Assembly Continued
DSC01203 (Medium).JPG
DSC01132 (Medium).JPG
Solder the wires from the secondary side of the transformer to the AC input pins of the rectifier on the circuit board.  

To hook up the DC jacks, cut nine pieces of wire about 1" long.   Solder wires from the center pin of Jack 1 to the center of Jack 2, Jack 3 to Jack 4, and Jack 5 to Jack 6.  With the remaining 1" segments, daisy chain wire to a remaining pin on each jack.  This will link all the negatives together. 

Cut four 3" segments of wire.  Solder one end of each to the 12V regulator output, 9V regulator output, 5V regulator output, and a common negative point, respectfully.  Then solder the other ends to a center pin of a 12V jack, a 9V jack, a 5V jack, and the daisy-chained jack negatives, respectfully.

Put the LED holder in place, and snap the LED in. 

With the board up away from the jacks, make sure there are no short circuits, especially on the AC side of the circuit, and then carefully plug in the power supply and see if it works.  Use a multimeter to check that there is 12V at the 12V jacks, 9V at the 9V, etc.  The LED should light up.


Next, put some electrical tape across the DC jacks so that nothing on the circuit board can touch them and short out.  The metal plates on the regulators are connected to ground and will short out anything they touch.  Also tape the pins of the capacitors and around the 120VAC connections for safety.

If everything works great, bend the circuit board back into the case.  A nice touch would be to put some two sided tape on the back of it and stick it to the inside of the cover plate.  Screw the box shut.

Step 7: Finished!

Picture of Finished!
DSC01196 (Medium).JPG
DSC01209 (Medium).JPG
DSC01208 (Medium).JPG
You now have your very own guitar pedal power supply!  Use it to run your pedals without having to waste batteries and streamline your pedal board or setup without needing several DC wall adaptors.

The beauty of this design is it is very customizable and expandable.  If you include a center-tapped transformer you can add negative voltages to power some elaborate homebrew pedals or amplifiers.  The possibilities are endless and this is a great starting point. 

I hope you liked my Instructions.  They're a little long in the tooth but I wanted to make sure that the maximum amount of information was available with minimal misinterpretation.  Please leave a comment if you have any questions or thoughts.

Thanks for reading!


1-40 of 256Next »

an easy way to get the power for pedals is to buy a cb regulated power supply then turn the regulator voltage down to 9 volts..might be a variable pot or a resistor change..simple getting a bit of a chuckle at how many guys are tring to complicate the issue....its a very simple problem to get around

Si HengT22 days ago

Hey Matt, I've followed the schematics, and wired everything up accordingly. Thanks a lot for the comprehensive instructions !

I'm facing a small problem though: when I check the voltage from each port, they all produce -9V DC. However, once I use a port to power my pedal, something seems to eat all the current up. My pedals are regular, 9V, and draw 14-19mA. What do you think could cause this?

Interestingly, when I try plugging in a cheaper pedal, it works just fine.

Hi Matt, I am a little confused on the parts. What are those two large cylinders on top of the whole power supply box. (Blue and Red on computer graphic)

Actually only blue on the computer graphic. still same question

janeliza29 days ago
hi sir mat, i made power supply based on your schematic. i used a 18 0 18 @1amper transformer, but when i tested it, the output from both 3 regulators was uniformed @ 19 - 20vac. where did i go wrong.? how should i fix it sir.? tnx.

sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v?

There is a way to use a center-tapped transformer without getting too high a voltage if you just ignore the center tap. This is done with a full wave rectifier as shown here:

Just replace the bridge rectifier in my circuit with two diodes to make a full wave rectifier as shown.

hi sir in your diagram where did you put the the two 1000uf volts capacitor and 3 10 uf 63v because in the diagram only 100uf numbers no voltage included sorry sir im a newbie -_-

because i count all the capacitors in the diagram there are 6 and the one i saw in your pictures is only 5 can you plase create a diagram that shown all the name of capacitors thank you sir for all the help

The value and quantity of the capacitors really isn't that important, what is important is where they are located and that the voltage rating for them is higher than the maximum voltage they will be subjected to. Subjecting a capacitor to a voltage higher than its rating can and will cause it to burst or explode. Just google this to see why you don't want this to happen.

Capacitors after the rectifying diodes (before the regulators) and after the regulators (a requirement stipulated in the 78xx regulator datasheet) is all you need. If you have major noise problems being caused by the power supply after it's built, I would suggest to add some more capacitors in parallel with the existing ones to help smooth out the voltage.

The 10000uF capacitors are oversized. They are functional but their huge value is partly cosmetic. Feel free to substitute a single 1000uF if you'd like, there shouldn't be any issue.

More info if you want to learn about it

sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v?

mau12.161 month ago

Dude. I want to have 9v 8 outputs. What should I do? I already get it in replacing the other 12v and 5v regulators with 9v one. How to add another 9v in the circuit? Thanks

mattthegamer463 (author)  mau12.161 month ago
Just add some more regulators and capacitors. If you add one more (4 total) you can put two pedals on each and have your 8 outputs.
JohnF75 months ago

ahhmm, i dont get it. im sorry, you have used 18v transformer right? so, i will remove the transformer there in your tutorial and replace a transformer that can work at 220v ac? im sorry man, i am confused.. by the way im from Philippines. we have 220v ac here

mattthegamer463 (author)  JohnF75 months ago
Sorry I misunderstood. I thought you were asking how you could do this without a transformer at all. The transformer outputs 18V but takes in 110V AC. Plugging a 110V transformer into 220V will cause the output to be 2x higher, but you will be able to buy a 220V to 18V transformer there in the Philippines. The input and output are referred to as "Primary" and "Secondary" coils, which will be rated for 220V and 18V respectively.

Hi.. So can I replace your transformer with 220v AC with 18v AC secondary rating?

mattthegamer463 (author)  mau12.161 month ago

Yep, that's the way.

JohnF75 months ago

man, thanks for this tutorial. but i live in a country which i get a 220v ac., what can i do if dnt wanna use transformer? thank you. im a newbie in electrnics.

mattthegamer463 (author)  JohnF75 months ago
You have to use a transformer. There isn't any practical way to make 9V DC from 220V AC.

Huh? Of course you can do it with a Zener diodes. E.g., please read this: The other question is that it is not always that safe and if you have crappy jumping power, then all your pedalboard might puff in smokes, once you use Zeners at the limit. Transformers are just nicer and safer.

mattthegamer463 (author)  bo.maryniuk2 months ago

I would never suggest someone not use a transformer for this kind of thing, especially for 220V AC. Not just for safety reasons, but for practical reasons too. If you do the math on a zener regulator circuit, the voltage drop resistor would need to dispose of more than 10W of extra power to get 50mA on the output, enough for only one or two pedals. Also, he says he is new to electronics, which frankly means he really shouldn't be messing around with 220V AC without the knowledge of how to be safe. Transformer or no, 220V AC is dangerous.

evan.stoddard2 months ago
So with that transformer you can only use 300ma worth of pedals correct?
mattthegamer463 (author)  evan.stoddard2 months ago
Pretty much. Won't be hazardous to go over that a little bit though.
evan.stoddard2 months ago
Or do you get more since you're dropping to 9v?
Davidv37 months ago

is it a problem if you live in a country where you get 230 volt ac out of the power outlet?

mattthegamer463 (author)  Davidv37 months ago
No, you just need a transformer which has a primary rated for 230V AC and a secondary rated for 9V AC. Some transformers can be wired specifically for 115V or 230V, but probably most cannot.

what about SMPS?

mattthegamer463 (author)  Okoraokora13 months ago

An SMPS would work but the concern is that the SMPS high frequencies will cause noise and high frequency sounds.

Wouldn't a 230 – 12 VAC work too? And would the LM7809's be able to operate at all if the secondary was 9 volts? – The datasheet specifies a minimum input voltage of 11.5 volts.

It would, just that the more excess voltage you have at the unregulated DC stage, the more heat the regulator is going to generate and the less current you will have available at the output. Because the transformer current rating is selected to be higher than the current that is actually going to be used, it will be higher than 9V. The rectified and smoothed output voltage of a 9V secondary, with no load, t is probably 14-15V. Using a higher transformer rating would just produce more voltage the regulator will have to waste.

The dropout voltage in the datasheet is 2V @ 1A, but 1A is the maximum current for the part. It would probably take 8 typical pedals on one output to use that much current. The dropout voltage is lower at smaller current levels. A part like the TI LM2940CT-9.0 is an improved linear regulator design that only has a dropout of 0.5V @ 1A. It is pin compatible so it can replace the generic 7809 directly.

Thanks for the informative answer; exactly what I needed to know. :)

rocking0186 months ago

is this an isolated power supply or is that a whole different game?

mattthegamer463 (author)  rocking0186 months ago
One of these per output could be used to make a isolated supply. Cost could probably be about $20 + extra $6 per output.
mattthegamer463 (author)  rocking0186 months ago
Totally different game. Isolated outputs require each output to have an isolating DC/DC converter (expensive) or a specialized transformer with many isolated output secondary windings (very expensive). With properly grounded cables, using an unisolated power supply shouldn't be a problem. Most retail units are not fully isolated either.
Jj.Diamante246 months ago

what will i do so that i'll have eight 9VDC outputs?

mattthegamer463 (author)  Jj.Diamante246 months ago
Multiply the regulators and output capacitors to get as many outputs as you want. For 8 outputs I would recommend at least 1A @ 9V transformer output current.


I am a lil confused about your circuit diagram vs. your list of components. The diagram shows (4) 100 uF caps and (2) 10 mF caps. Your list is saying use (3) 10 uF and (2) 10 mF or (2) 100 uF for less overkill. I like your design and I wanted to build one, but I dunno if I should have 6 caps or just 5 caps?

You'll need a cap for each regulator output, so I would recommend you use one 10uF and two 100uF before the regulators, and a 100uF after each regulator, from the output to ground. To prevent any oscillations I would also add a 100nF in parallel with each of those output capacitors. This is good practice that I was not aware of 4 years ago when I did this Instructable.
1-40 of 256Next »