Step 5: Assembly

Short version:  Put it together.

Long version: The best components to start with are the DC jacks.  I used hot glue to hold them in place because the threaded portions weren't long enough to reach through the plastic and the aluminum and still have room for a nut.  Make sure that they are all aligned straight ( I messed this up) so that they will be easier to wire up.  Use lots of hot glue to make sure they won't get pushed in when being plugged into.

Next, install the transformer, fuse holder and IEC receptacle.  Use nuts and bolts for the IEC and the transformer, and use the nut supplied with the fuse holder to fasten it in place.  Also put the toggle switch in place so that you can wire up the AC portion of the circuit before the big caps and board get in the way.

That being said, now is a good time to wire up some more of the circuit.  Solder one wire from the primary (120V) side of the transformer to one of the locations on the back of the IEC receptacle.  The two that are next to each other are the Live and Neutral, the other lower one is the Earth which we won't use since this is a plastic housing.  Connect the other wire from the primary side of the transformer to the fuse holder, then solder a wire from the fuse holder to the toggle switch, and from the toggle switch back to the remaining connection on the IEC receptacle.  The chain should be:

IEC -> Transformer -> Fuse -> Toggle switch -> Back to IEC

Now that those are in place, put in the circuit board and caps.  To affix the capacitors, I put a zip tie around each one, and then rested them inside on the zip tie, and glued them in place.  

<p>Great build Matt, thanks.</p><p>On your photobucket feed, there is an effects pedal with a tube installed on it. What is that, and could you share how it was made?</p>
Here's the forum about it. Hopefully these tubes can still be found. They don't glow, by the way.<br><br>http://www.diystompboxes.com/smfforum/index.php?topic=70533.0<br><br>As I was writing this I realized you said &quot;tube&quot; singular, not plural. If you're referring to the single 12AX7 tube on a box, I don't remember what that pedal was. It never worked properly and I still have it sitting here, gutted, waiting for some kind of circuit. There are a lot of 12V 12AX7 based distortions/crunchers on the net though so you won't have a hard time finding one if you're looking for a tube-based pedal. They don't sound as great as you'd imagine. They do look neat though. Since then I've stuck to tubes for HiFi only (and a modern fender tube amp which I don't dink around inside)
<p>This is very cool and I thank you much for it's creation.</p>
<p>is this an isolated power supply or is that a whole different game?</p>
Totally different game. Isolated outputs require each output to have an isolating DC/DC converter (expensive) or a specialized transformer with many isolated output secondary windings (very expensive). With properly grounded cables, using an unisolated power supply shouldn't be a problem. Most retail units are not fully isolated either.
<p>Hi Matt, I was wondering what made you choose the DC/DC converter that you did as I'd be interested to find the 6V and 12V converters as well? Also, as the min input voltage on the converters is 10.8, does that mean the circuit needs different regulators to feed the higher input requirement of the converters? Or, do the converters replace the regulators?</p><p>Thanks for the help!</p>
<p>The DC/DC converters replace the regulators, they basically just regulate the voltage but in a more efficient way. Some also feature isolated outputs. The unregulated DC from the rectifier and capacitors just needs to be within the module's input range.</p><p>If you're interested in the isolated power aspects, you can also use the converters and just hook them to an off the shelf DC power supply. One like the one below will give isolated 9V from 5V DC from a wall adapter.</p><p><a href="http://www.digikey.ca/product-detail/en/PDS1-S5-S9-D/102-3024-5-ND/4006992" rel="nofollow">http://www.digikey.ca/product-detail/en/PDS1-S5-S9...</a></p>
One of these per output could be used to make a isolated supply. Cost could probably be about $20 + extra $6 per output.<br><br>http://www.digikey.ca/product-detail/en/PDS1-S12-S9-S/102-3012-5-ND/4006980
Thanks. Great Instructable. I took the same schematic and same idea, without the project box, and mounted it to the bottom of my pedal board I made! Check it out...<br><br>All six DC cables are 9v, and I put two through each hole in the board, for maximum movability.
Nice job, looks great
<p>Hi Matt, I am a little confused on the parts. What are those two large cylinders on top of the whole power supply box. (Blue and Red on computer graphic)</p>
<p>Actually only blue on the computer graphic. still same question</p>
Hi there, sorry for the delayed response, the Instructables email system seems to have broken until just today.<br><br>Those are large capacitors sticking out of the case. They are like that only for cosmetic reasons, they are much larger than the circuit requires. Feel free to use a lower value like 1000uF, they will be much smaller.
hi sir mat, i made power supply based on your schematic. i used a 18 0 18 @1amper transformer, but when i tested it, the output from both 3 regulators was uniformed @ 19 - 20vac. where did i go wrong.? how should i fix it sir.? tnx.
You should have no AC voltage at the output of the regulators, only DC voltage. Check the pinout of your regulators to make sure they are wired correctly, also make sure your bridge rectifier/rectifier diodes are correct because you should not have that high an AC voltage if you have the rectifier and capacitors in place.
<p>an easy way to get the power for pedals is to buy a cb regulated power supply then turn the regulator voltage down to 9 volts..might be a variable pot or a resistor change..simple ...im getting a bit of a chuckle at how many guys are tring to complicate the issue....its a very simple problem to get around</p>
<p>Hey Matt, I've followed the schematics, and wired everything up accordingly. Thanks a lot for the comprehensive instructions !</p><p>I'm facing a small problem though: when I check the voltage from each port, they all produce -9V DC. However, once I use a port to power my pedal, something seems to eat all the current up. My pedals are regular, 9V, and draw 14-19mA. What do you think could cause this?</p><p>Interestingly, when I try plugging in a cheaper pedal, it works just fine.</p>
<p>sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v? </p>
There is a way to use a center-tapped transformer without getting too high a voltage if you just ignore the center tap. This is done with a full wave rectifier as shown here:<br><br>http://savedonthe.net/image/1761/full_wave.png<br><br>Just replace the bridge rectifier in my circuit with two diodes to make a full wave rectifier as shown.
<p>hi sir in your diagram where did you put the the two 1000uf volts capacitor and 3 10 uf 63v because in the diagram only 100uf numbers no voltage included sorry sir im a newbie -_-</p>
<p>because i count all the capacitors in the diagram there are 6 and the one i saw in your pictures is only 5 can you plase create a diagram that shown all the name of capacitors thank you sir for all the help</p>
<p>The value and quantity of the capacitors really isn't that important, what is important is where they are located and that the voltage rating for them is higher than the maximum voltage they will be subjected to. Subjecting a capacitor to a voltage higher than its rating can and will cause it to burst or explode. Just google this to see why you don't want this to happen.</p><p>Capacitors after the rectifying diodes (before the regulators) and after the regulators (a requirement stipulated in the 78xx regulator datasheet) is all you need. If you have major noise problems being caused by the power supply after it's built, I would suggest to add some more capacitors in parallel with the existing ones to help smooth out the voltage. </p><p>The 10000uF capacitors are oversized. They are functional but their huge value is partly cosmetic. Feel free to substitute a single 1000uF if you'd like, there shouldn't be any issue.</p>
<p>More info if you want to learn about it</p><p>http://www.daenotes.com/electronics/devices-circuits/center-tapped-full-wave-rectifier</p>
<p>sir i have a transformer 220v to 12v outputs my problem is the transformer is have 3 pins 12v 0v 12v what should i use the 12v and 0v? </p>
<p>Dude. I want to have 9v 8 outputs. What should I do? I already get it in replacing the other 12v and 5v regulators with 9v one. How to add another 9v in the circuit? Thanks</p>
Just add some more regulators and capacitors. If you add one more (4 total) you can put two pedals on each and have your 8 outputs.
<p>ahhmm, i dont get it. im sorry, you have used 18v transformer right? so, i will remove the transformer there in your tutorial and replace a transformer that can work at 220v ac? im sorry man, i am confused.. by the way im from Philippines. we have 220v ac here</p>
Sorry I misunderstood. I thought you were asking how you could do this without a transformer at all. The transformer outputs 18V but takes in 110V AC. Plugging a 110V transformer into 220V will cause the output to be 2x higher, but you will be able to buy a 220V to 18V transformer there in the Philippines. The input and output are referred to as &quot;Primary&quot; and &quot;Secondary&quot; coils, which will be rated for 220V and 18V respectively.
<p>Hi.. So can I replace your transformer with 220v AC with 18v AC secondary rating?</p>
<p>Yep, that's the way.</p>
<p>man, thanks for this tutorial. but i live in a country which i get a 220v ac., what can i do if dnt wanna use transformer? thank you. im a newbie in electrnics. </p>
You have to use a transformer. There isn't any practical way to make 9V DC from 220V AC.
<p>Huh? Of course you can do it with a Zener diodes. E.g., please read this: http://www.designercircuits.com/DesignNote1a.pdf The other question is that it is not always that safe and if you have crappy jumping power, then all your pedalboard might puff in smokes, once you use Zeners at the limit. Transformers are just nicer and safer.</p>
<p>I would never suggest someone not use a transformer for this kind of thing, especially for 220V AC. Not just for safety reasons, but for practical reasons too. If you do the math on a zener regulator circuit, the voltage drop resistor would need to dispose of more than 10W of extra power to get 50mA on the output, enough for only one or two pedals. Also, he says he is new to electronics, which frankly means he really shouldn't be messing around with 220V AC without the knowledge of how to be safe. Transformer or no, 220V AC is dangerous.</p>
So with that transformer you can only use 300ma worth of pedals correct?
Pretty much. Won't be hazardous to go over that a little bit though.
Or do you get more since you're dropping to 9v?
<p>is it a problem if you live in a country where you get 230 volt ac out of the power outlet?</p>
No, you just need a transformer which has a primary rated for 230V AC and a secondary rated for 9V AC. Some transformers can be wired specifically for 115V or 230V, but probably most cannot.
<p>what about SMPS?</p>
<p>An SMPS would work but the concern is that the SMPS high frequencies will cause noise and high frequency sounds.</p>
<p>Wouldn't a 230 &ndash; 12 VAC work too? And would the LM7809's be able to operate at all if the secondary was 9 volts? &ndash; The datasheet specifies a minimum input voltage of 11.5 volts.</p>
<p>It would, just that the more excess voltage you have at the unregulated DC stage, the more heat the regulator is going to generate and the less current you will have available at the output. Because the transformer current rating is selected to be higher than the current that is actually going to be used, it will be higher than 9V. The rectified and smoothed output voltage of a 9V secondary, with no load, t is probably 14-15V. Using a higher transformer rating would just produce more voltage the regulator will have to waste.</p><p>The dropout voltage in the datasheet is 2V @ 1A, but 1A is the maximum current for the part. It would probably take 8 typical pedals on one output to use that much current. The dropout voltage is lower at smaller current levels. A part like the TI LM2940CT-9.0 is an improved linear regulator design that only has a dropout of 0.5V @ 1A. It is pin compatible so it can replace the generic 7809 directly.</p>
<p>Thanks for the informative answer; exactly what I needed to know. :)</p>
<p>what will i do so that i'll have eight 9VDC outputs? </p>
Multiply the regulators and output capacitors to get as many outputs as you want. For 8 outputs I would recommend at least 1A @ 9V transformer output current.
<p>Matt,</p><p>I am a lil confused about your circuit diagram vs. your list of components. The diagram shows (4) 100 uF caps and (2) 10 mF caps. Your list is saying use (3) 10 uF and (2) 10 mF or (2) 100 uF for less overkill. I like your design and I wanted to build one, but I dunno if I should have 6 caps or just 5 caps?</p>
You'll need a cap for each regulator output, so I would recommend you use one 10uF and two 100uF before the regulators, and a 100uF after each regulator, from the output to ground. To prevent any oscillations I would also add a 100nF in parallel with each of those output capacitors. This is good practice that I was not aware of 4 years ago when I did this Instructable.

About This Instructable


298 favorites


More by mattthegamer463: DIY 6x17 Panoramic Film Camera Pentax Spotmeter V Repair Mechanical Wind-Up Star Tracker for Astro-Photography
Add instructable to: