Instructables

Building A Stereo Tube Amp

Featured

Step 3: The Audio Circuit: What's Going On

Push-Pull

The basic principle behind this amp is pretty cool and worth taking a look at. This amp is called a 6V6 Push-Pull amp, the 6V6 being the tube model, but what's this push-pull business? It refers to a special case of differential circuits, where a whole signal is made up of the difference of two voltages, a negative and a positive (technically speaking, only the output stage is push-pull, but both are differential). Simply put, one tube produces to the positive half of the AC audio signal, pushing the speaker out, while the other one produces the negative half, pulling the speaker cone in, and as a result sound waves are created. Take the two triodes in the preamp, for example. Their cathodes are connected together and the signal goes to the grid of only one of the tubes. So, when the signal goes high, the grid on the one tube repels less of the electrons jumping off the cathode, and so more rush across, and since the cathodes are connected together, electrons also rush out of the cathode of the other tube as well. This results in current flowing in one direction through the circuit and eventually through a transformer which produces a current forcing the speaker cone outwards. When the signal goes low, the opposite occurs. The grid repels electrons back to the cathode and these electrons go to the cathode of the other tube, sending current in the opposite direction as before. When this current goes through the primary coil of the output transformer, it induces a current in the secondary coil which causes the speaker cone to move inwards.

Before it does go to the speakers, though, the signal is filtered through the two .33uF capacitors (DC can't pass through these, since a capacitor is technically a break in the circuit, but AC can) and makes its way on to the output stage, or the main amplifier section. Then, everything happens all over again, except this time with the 6V6's and to a greater extent. The -20 DC voltage in the middle there is for the bias on the grids of the 6V6's. The shield of the 6V6's is connected through a resistor to the anode, so that it has a fraction of the anode voltage.
 
Remove these adsRemove these ads by Signing Up