# Charlieplexing LEDs- The theory

## Step 1: Some LED theory

Charlieplexing relies on a number of useful aspects of LEDs and modern microcontrollers.

Firstly what happens when you connect an LED to electricity.

The main diagram below shows what is called the If v Vf curve of a typical 5mm low power LED.
If stands for 'forward current'
Vf stands for 'forward voltage'
The vertical axis in otherwords shows the current that will flow through an LED if you put the horizontal axis voltage across it's terminals. It works the other way around as well, if you measure that the current is of some value, you can look across to the horizontal axis and see the voltage the LED will present across it's terminals.
The second diagram shows a schematic representation of an LED with If and Vf labelled.

From the main diagram I've also labelled areas of the graph that are of interest.
- The first area is where the LED is 'off'. More accurately the LED is emitting light so dimly you won't be able to see it unless you had some sort of super-duper image intensifier.
- The second area has the LED just slightly emitting a dim glow.
- The third area is where an LED is usually operated and is emitting light at the manufacturers rating.
- The forth area is where an LED is operated beyond it's operating limits, is probably glowing very brightly but alas for only a short time before the magic smoke inside escapes and it won't operate again......ie in this area it burns out because too much current flows through it.

Note that the If/Vf curve or operating curve of the LED is a 'non-linear' curve. That is, it is not a straight line...it has a bend or kink in it.

Lastly this diagram is for a typical 5mm red LED designed to operate at 20mA. Different LEDs from different manufacturers have different operating curves. For example in this diagram at 20mA the forward voltage of the LED will be approximately 1.9V. For a blue 5mm LED at 20mA the forward voltage might be 3.4V. For a high power white luxeon LED at 350mA the forward voltage might be around 3.2V. Some LEDs packages might be several LEDs in series or in parallel, changing the Vf/If curve again.

Typically a manufactuer will specify an operating current which is safe to use the LED at, and the forward voltage at that current. Usually (but not always) you get a graph similiar to below in the datasheet. You need to look at the datasheet for the LED to determine what the forward voltage is at different operating currents.

Why is this graph so important? Because it shows that when a voltage is across the LED, the current that will flow will be according to the graph. Lower the voltage and less current will flow.....and the LED will be 'off'. This is part of the theory of charlieplexing, which we'll get to in the next step.

Remove these ads by Signing Up