Bioprinting is printing with biological materials. Think of it as 3D printing, but with squishier ingredients! There's a lot of work being done at research labs and big companies like Organovo on print human tissues and human organs, with an eye towards drug testing, and transplantation into humans. Check out these amazing TED talks by Anthony Atala, for example:

Anthony Atala: Growing new organs
Anthony Atala: Printing a human kidney

All this sounds incredible complex, but the fact is that the basic technologies are very accessible - it's all based on inkjet and/or 3D printing! So a bunch of us at BioCurious decided we wanted to play around with this technology ourselves - and the BioPrinter Community Project was born! (Come join us, every Thursday evening at BioCurious!)

We wrote this instructable in part to document our project for our fellow Citizen Scientists in the DIYbio community, so it's getting a little long. For those who want a quick 1-minute intro, you may want to check this little video:

Step 1: Hacking an old inkjet printer to print biomaterials

We started out by messing around with an old inkjet printer that we literally saved from a sidewalk somewhere. There's already plenty of interesting things you can do with an low-end off-the-shelf inkjet printer, but they do have some limitations, which we'll get into in the next Step (or skip straight to Step 3 for how we built our own bioprinter from scratch, that you can see in the first picture above).

Undressing the Printer

We disassembled an abandoned HP 5150 inkjet printer for use as a bioprinter. Just rip off all the plastic covers you can find, but make sure you can still operate the reset buttons etc. on the front panel.

There's a little momentary switch that senses whether the cover is open. After you've ripped off the cover, you will need to close that switch to be able to print anything. You can just press it down by hand or with a toothpick, glue a little piece of plastic or a screw onto it to make it easier to depress, solder on an on/off switch, or even just bridge it with a piece of wire (so it thinks the cover is always closed).

There's also a momentary switch inside the paper handling mechanism that senses whether paper has been loaded. You may need to rewire that one as well is you plan to mess with the paper handling.

Once you've got your printer all undressed, and figured out how to activate the cover-closed switch - print something! It'll be a good test to see if you've knocked something loose and whether you can still operate all the buttons. Plus, it's just darn cool to see an inkjet printer do its job up-close. Keep your fingers out of the way though - those cartridges move fast!

Cartridges Prep

Next task is prying open an ink cartridges, so you can fill them with something more interesting. We will be using brand new cartridges for the printer, because old cartridges tend to have residual ink clogging their nozzles. However, you might want to practice opening expired cartridges first. Wouldn't hurt to do a test print, and flush the print head, if your printer software provides that option.

After taking off any labels, you'll see that most cartridges have a lid that's glued into place, usually with some small vent holes to let air in as ink flows out. If you run an Exacto knife or box cutter along the seam long enough, you should be able to cut through some of the glue, and pop the lid off fairly quickly. WARNING – boxcutters are SHARP! If you're a kid, get some responsible adult to help you with this! If you're an adult - consider protecting your hand with a knife-proof glove, and/or clamping down the cartridge in a vise while you're doing this.

Alternatively, you can cut off the lid using your favorite power tool. *Much* easier, but not quite as clean. Keep in mind that you may need to be able to put the cartridge back together again, to get it to fit into the cartridge holder. If anyone knows of an easier way to open inkjet cartridges, post something in the comments! Maybe there's some solvent that will loosen up the glue without dissolving the cartridge itself?

Once the cartridge is open, you'll see that the entire ink reservoir is taken up by a little sponge that holds the ink in place. Color cartridges have separate ink compartments with their own sponges (typically Cyan-Magenta-Yellow, not Red-Green-Blue, since printing colors on white paper is a subtractive color process). You can squeeze out any remaining ink and keep it for later experiments (e.g. for some paper chromatography). Next, rinse, rinse, and rinse some more with distilled or deionized water-we don’t want to clog the print head with mineral residue.  We want to get all that ink out of there, so it doesn't interfere with our experiments.

Once the ink reservoir is completely clean, fill it partway with distilled or deionized water, put the lid back on, pop it back into the cartridge holder, and print something. Chances are, no matter how well you rinsed, you'll still see some residual ink coming out. Just keep printing until it's printing clear, and then print some more.

We discovered that our cartridge actually slowly leaks through the print head when you fill it completely with water, but it does not leak when you only put in a small amount. That actually provides a very convenient way to flush out the print head, without having to print.

Filling the Cartridges

At this point, what you want to put in the ink cartridge is entirely up to your imagination! We started out by putting some green food coloring in the formerly black ink cartridge, and printed out a test page to show that it worked. You could also try filling up the color cartridge with fluorescent dyes of your choice, and print out you own blacklight posters. Or, put some invisible ink in the black cartridge, and print invisible messages to your friends.

As our first real "bioprinting" experiment, we wanted to start with something simple, instead of jumping straight into printing with live cells. We decided to print with a solution of arabinose onto filter paper. Then we cut out the filter paper, and put it onto an agarose plate on which we had grown a lawn of E. coli that we had engineered to carry the pGLO plasmid. This plasmid carries the Green Fluorescent Protein (GFP), under control of an arabinose-sensitive promoter. (Stay tuned for an instructable on how to make your own GFP-expressing E. coli).

As a result, wherever we had printed arabinose on the filter paper, we now saw the E. coli light up green under UV light! Note that the beauty of this experiment lies in its simplicity: we only had to print with a simple sugar solution, rather than with bulky live cells; and we were printing on paper, so we didn't even have to change the paper handling machinery. You could also try printing with antibiotics, or even proteins, such as enzymes or growth factors.

The second-to-last image above shows our first test print, where we has printed arabinose over half of the filter paper - and half of the plate lights up under UV light. In the second image, we had printed the BioCurious "eyeball" logo. Success! Unfortunately the sharpness of the image definitely leaves much to be desired. Presumably, the arabinose tends to diffuse through the filter paper, which smears out the printed pattern. We should be able to do much better by printing directly on the agarose.
<p>Hi, </p><p>Very nice project!</p><p>I have a question about the Inkshield part. I got my inkshield now but it seems to print not on the entire height. So the bottom part of the letters are cut off?? </p><p>I checked the contacts an everything seems to be fine, the ink is brand new? but coud a nozzle be broken or really badly clogged? i tried to clean it with isopropanol but nothing. It just chops 1 or two lines of... any ideas? just a new ink?</p>
<p>Hey figured it out (at least for me). The root of the problem is that your printhead is not getting 20V throughout the print. I was having voltage drops as i printed which caused the odd printing. This can be fixed by using a different inductor or by running a 20V line directly (thats what I did). </p>
<p>DUDE! ME TOO! I thought I was the only one, have you figured out anything?</p>
HEy! no... no luck the creator took my money and doesn't respond to any mails... <br>perhaps write him to!?
<p>So the first image is the problem I think we share. If not what does yours do. The second image is an interesting interaction - when I move the position of the inkhead in the carrier is when I get these results (NOTE: The top bar was from testing it the first way mutliple times - normally its just lines). I move the position by pulling the inkhead out one &quot;click&quot;. I know this looks like a short but I have tested for rogue continuity everyday. According to Lewis's website, the second image is indicative of an issue with the ABCD connection but I dont know how to fix it when I know the points are on (otherwise how would I get the first image to print at all). </p>
<p>dang man, I've been trying so much to figure this out, Ill post my &quot;results&quot;. I did find some interesting interactions but I dont know what to make of it. I will say though, I did not use his kit. Im working on a 3d printer that uses his tech but the problem im having is an inkshield problem. So how does it happen for you?</p>
<p>Its terrific :)</p>
<p>Hi, this is really interesting, but sadly doesn't quite tell me what I nee to know for my project.</p><p>I am trying to get an Epson ink cartridge to print on demand using an arduino. I already have the movement sorted, but can't figure out how to get the ink to dispense.</p><p>Any ideas? Really struggling</p>
could you use this to make leather
<p>To print your own leather? There are groups working on this!</p>
<p>Is there any way I can make a 3D Printer With an old laserjet printer, and arduino, cd drives? I have 2 arduinos..... But is there any way I could do that<br></p>
<p>You could do a very limited one but keep in mind that this design doesn't have an X axis and a very limited print area (neither of which is an issue for bioprinting because of the small quantities being worked with).</p>
<p>here's the ebola strand :) http://www.ncbi.nlm.nih.gov/nuccore/10313991</p>
<p>(yes I am aware that it is not feasible to do this with this particular strand of ebola... or any)</p>
For printing in papers we use inks , but for priniting life cells what should we use ???????
<p>other living cells</p>
Soften any 'plastic', abs with a couple drops. Mix by weight 60% lacquer thinner and 40% acetone. (You can alao combine 30 to 35% ether and 65 to 70% naphtha to make a petroleum distillate but remember it's 72% volatile!) Use a suitable eye dropper non-plastic or rubber...some plastics are safe as applicators. For really small precision jobs use a suitable syringe. Polyethylene for example should be ok to use. <br><br>(You know the drill for safely dealing with chemicals...don't be stupid! Get a little help from someone who knows what they're doing and where) (http://www.uic.edu/sph/glakes/harts1/HARTS_library/solventhazards.txt)<br>This solvent works fine for making plastic welds and all sorts of plastic repairs.<br><br>Make sure to use lacquer thinner and not just toluene. The additives help make a close solvent to weld plastic. Check VOC's before you start. No MEK required but it's ok if in the lacquer thinner. (Thin out some ABS solvent and dissolve ground abs to make a great filler. <br><br>
Sorry just fyi...I'm a hack so check everything before trying to open a cartridge. I have very advanced training in industrial fabrication but the tinkering is just a hobby that I totally get for no explained reason.<br>Keep safe.
<p>I'm absolutely amazed. This work is truly fantastic. No other words than compliments and compliments. A little question.<br>Do you think is it possible using living animal cells to build an active layer for an enzimatic bioreactor like a sintetic belly - gut?</p>
<p>Wow very cool</p>
<p>Good work with printer.</p>
<p>This is a fantastic Instructable. Now I won't have to steal live kidneys anymore.</p>
<p>kidneys and eggs yum!</p>
<p><iframe allowfullscreen="" frameborder="0" height="281" src="//www.youtube.com/embed/qXXZLoq2zFc" width="500"></iframe></p><p>The first minute explains the possibilities of BioPrinters.</p>
<p>Amazing work!!!</p>
<p>Three words: Living Litmus Paper</p>
<p>Aren't the inks in inkjet cartridges alcohol based? Wouldn't it make more sense to put rubbing alcohol to clean the cartridges rather than just plain water?</p>
<p>Wow! This is amazing. Great job. </p><p>Congratulations guys!</p>
People are selling refillable ink cartridges now, so it might be much easier (and safer) to buy a cartridge that is designed to be refilled. (Although, you'd still have to open it up &amp; remove the sponge) <br>http://www.amazon.com/s/ref=a9_asi_1?rh=i%3Aoffice-products%2Ck%3Arefillable+ink+cartridges&amp;keywords=refillable+ink+cartridges&amp;ie=UTF8&amp;qid=1443536137
<p>it is seems to be fantastic.us it possible to get the coding for the bioprinter ? if yes plss mail me </p>
<p>This project really very cool!</p><p>Iam impressed.</p>
<p>Hi ! <br><br>Great project . is it possible to get the codes used for the project. im trying to figure out how to use inkshield for a similar project of mine and im only a beginner :)<br><br>Thanks alot !</p>
<p>How about using a cnc milling machine to cut a precision opening in the top of the ink cartridges. Then another part could be machined to fit in the opening to close it. Look at the Othermill - www.othermachine.co/othermill as a suggestion.</p>
<p>clever, i'll give this a go when they come to town!</p>
<p>hello, does anyone have a sample of the arduino code? please email me abrarnourallah@gmail.com</p>
<p>Excellent project. Must try this</p>
<p>Interesting! But I have a question. What happened to the plate of E.coli on the agar plate? Wouldn't the cells eventually die off or if given nutrients grow so that the words were obscured? Is there any way to preserve the cells besides a picture? Or is deterioration inevitable?</p>
<p>I am working on a presentation for College, does anyone know what the price is? I would also like to know what will the market for this be? Will it be distributed to hospitals or will it be able to be used in small clinics?</p>
<p>Hi Alex! I visited BioBots website! When will the BioBots be available?</p>
<p>We are working on something similar over at <a href="http://www.biobots.io/" rel="nofollow">BioBots</a>. A low cost, high resolution, 3D bioprinter that is revolutionizing the field of regenerative medicine.</p>
<p>Its really good :)</p>
<p>Really good</p>
<p>Thats astounding...</p>

About This Instructable




More by Patrik:Highly sensitive Arduino light sensorGhost Heart in a Jar!Small leatherwork projects
Add instructable to: