Step 5: Build an X-Y platform from scavenged CD drives

Salvaging Parts from CD/DVD Drives

Let's upcycle some crappy old CD/DVD drives that nobody else wants anyway. I was able to find a stack of chunky old drives for only a dollar or two each at Urban Ore in Berkeley. Check your local electronics recycling place.

Disassembling the CD/DVD drives is fairly straightforward. You can use the old paperclip trick to open the tray mechanism.

You may have to disassemble a number of drives to find ones with a stepper motor. At least half of the ones we opened seemed to have a DC motor driving the slide that moves the laser head. If someone knows how to tell the drives with stepper motors from those with DC motors from the outside, let us know! They're easy enough to recognize once you opened up the drive though: DC motor only have two wires, while the stepper motors usually have four, typically on a little flex cable (see pictures above).

As opposed to DC motors, stepper motors can be made to move a discrete number of steps, where each step is a fraction of a full revolution. This makes it very easy to do highly accurate positioning, without needing fancy feedback systems to check what position you're at. 3D printers typically use stepper motors to position the print head, for example.

Using the Stepper Motor

After checking some serial numbers online, we stumbled across one stepper motor labeled PL15S-020, which turns out to be a common and very well documented bipolar stepper motor. Many of the other stepper motors we found look very similar to this one, so we'll just assume they have the same parameters (annotation transfer by homology).

Data sheet: http://robocup.idi.ntnu.no/wiki/images/c/c6/PL15S020.pdf

This particular stepper motor does 20 steps per revolution (not great, but good enough), and the lead screw has a pitch of 3mm per revolution. Therefore, each step of the stepper equals a 150 micron displacement of the laser head - not bad! We could potentially drive up the resolution significantly by doing microstepping. For example, a simple 8x microstepping could theoretically bring the resolution down to less than 20 micron, which seems overkill given the amount of mechanical slack in the system, and the resolution of our print head.

Since we were all teaching ourselves Stepper Motors 101 anyway, we decided to keep it simple and go with full steps. The Arduino.cc website has some Circuits for Bipolar Stepper Motors as well as sample code to drive them. We ordered some SN754410NE H-Bridges to implement the circuit shown in the last picture.

Reduce, Reuse, Upcycle!

Old CD/DVD drives have lots of other cool bits too! There's the tray open/close mechanism containing a DC motor with some low-speed gearing, that can be used for a variety of other fun tricks. The spindle motor that spins the CD is typically a high performance brushless DC motor, which have been used for very low weight RC planes and helicopters. Plus, a bunch of switches, potentiometers, friggin' LASERS, and the occasional solenoid! Make sure to drop off the leftovers at your local electronics recycling place.
<p>quick turn pcb board .12usd for 5pcs 100*100mm prototype pcb board . more information,pls contact eva liang via mail: service01@pcbgogo.com. make pcb board at http://www.pcbgogo.com/c</p>
For printing in papers we use inks , but for priniting life cells what should we use ???????
<p>other living cells</p>
Soften any 'plastic', abs with a couple drops. Mix by weight 60% lacquer thinner and 40% acetone. (You can alao combine 30 to 35% ether and 65 to 70% naphtha to make a petroleum distillate but remember it's 72% volatile!) Use a suitable eye dropper non-plastic or rubber...some plastics are safe as applicators. For really small precision jobs use a suitable syringe. Polyethylene for example should be ok to use. <br><br>(You know the drill for safely dealing with chemicals...don't be stupid! Get a little help from someone who knows what they're doing and where) (http://www.uic.edu/sph/glakes/harts1/HARTS_library/solventhazards.txt)<br>This solvent works fine for making plastic welds and all sorts of plastic repairs.<br><br>Make sure to use lacquer thinner and not just toluene. The additives help make a close solvent to weld plastic. Check VOC's before you start. No MEK required but it's ok if in the lacquer thinner. (Thin out some ABS solvent and dissolve ground abs to make a great filler. <br><br>
Sorry just fyi...I'm a hack so check everything before trying to open a cartridge. I have very advanced training in industrial fabrication but the tinkering is just a hobby that I totally get for no explained reason.<br>Keep safe.
<p>I'm absolutely amazed. This work is truly fantastic. No other words than compliments and compliments. A little question.<br>Do you think is it possible using living animal cells to build an active layer for an enzimatic bioreactor like a sintetic belly - gut?</p>
<p>Wow very cool</p>
<p>Good work with printer.</p>
<p>This is a fantastic Instructable. Now I won't have to steal live kidneys anymore.</p>
<p>kidneys and eggs yum!</p>
<p><iframe allowfullscreen="" frameborder="0" height="281" src="//www.youtube.com/embed/qXXZLoq2zFc" width="500"></iframe></p><p>The first minute explains the possibilities of BioPrinters.</p>
<p>Amazing work!!!</p>
<p>Three words: Living Litmus Paper</p>
<p>Aren't the inks in inkjet cartridges alcohol based? Wouldn't it make more sense to put rubbing alcohol to clean the cartridges rather than just plain water?</p>
<p>Wow! This is amazing. Great job. </p><p>Congratulations guys!</p>
People are selling refillable ink cartridges now, so it might be much easier (and safer) to buy a cartridge that is designed to be refilled. (Although, you'd still have to open it up &amp; remove the sponge) <br>http://www.amazon.com/s/ref=a9_asi_1?rh=i%3Aoffice-products%2Ck%3Arefillable+ink+cartridges&amp;keywords=refillable+ink+cartridges&amp;ie=UTF8&amp;qid=1443536137
<p>Awesome work..</p>
<p>it is seems to be fantastic.us it possible to get the coding for the bioprinter ? if yes plss mail me </p>
<p>This project really very cool!</p><p>Iam impressed.</p>
<p>Hi ! <br><br>Great project . is it possible to get the codes used for the project. im trying to figure out how to use inkshield for a similar project of mine and im only a beginner :)<br><br>Thanks alot !</p>
<p>How about using a cnc milling machine to cut a precision opening in the top of the ink cartridges. Then another part could be machined to fit in the opening to close it. Look at the Othermill - www.othermachine.co/othermill as a suggestion.</p>
<p>clever, i'll give this a go when they come to town!</p>
<p>hello, does anyone have a sample of the arduino code? please email me abrarnourallah@gmail.com</p>
<p>Excellent project. Must try this</p>
<p>Interesting! But I have a question. What happened to the plate of E.coli on the agar plate? Wouldn't the cells eventually die off or if given nutrients grow so that the words were obscured? Is there any way to preserve the cells besides a picture? Or is deterioration inevitable?</p>
<p>I am working on a presentation for College, does anyone know what the price is? I would also like to know what will the market for this be? Will it be distributed to hospitals or will it be able to be used in small clinics?</p>
<p>Hi Alex! I visited BioBots website! When will the BioBots be available?</p>
<p>We are working on something similar over at <a href="http://www.biobots.io/" rel="nofollow">BioBots</a>. A low cost, high resolution, 3D bioprinter that is revolutionizing the field of regenerative medicine.</p>
<p>Extremely good...!!</p>
<p>Its really good :)</p>
<p>Really good</p>
<p>Thats astounding...</p>
<p>Its magnificent :)</p>
<p>Very cool!!</p>
<p>Thats impressive</p>
<p><br>Thats impressive<br></p>
<p>Thats excellent</p>
<p><br><br>Its extremely good :)<br><br></p>
<p>Reading this Instructable gives me chills!</p>
<p><br>Thats extremely good...<br></p>
<p>Its really good :)</p>
<p><br>Very good...!!<br></p>
so awesome

About This Instructable


1,511 favorites


More by Patrik: Highly sensitive Arduino light sensor Ghost Heart in a Jar! Small leatherwork projects
Add instructable to: