Picture of Digital multimeter shield for Arduino

This instructable describes a shield, which converts "Arduino" board in a digital multimeter (DMM).

The shield can be inserted on "Arduino" UNO und Duemilanove boards. It can work in three modes:

  • standalone - the measurement data can be seen at the character or graphical LCM
  • connected - the measurement data can be read on the PC screen using the "Arduino" IDE "Serial monitor"
  • combined - the data can be observed on both devices

The second mode does not require the presence of LCM, what makes the shield very cheap.

The "Arduino" based DMM has the following functions:

  • voltmeter with 3 ranges : 0-10V; 0-30V; 0-100V
  • amperemeter - it has a range 0-500mA
  • ohmmeter with 2 ranhes : 0-1KOhm, 0-250KOhm
  • diode, LED, connectivity checker
  • LED functionality tester
  • NPN BJT Beta meter
Remove these adsRemove these ads by Signing Up

Step 1: DMM "Arduino" v/s Standard digital multimeter

The following movie shows how the "Arduino" based DMM works in comparison with non-professional standard DMM


Picture of WARNINGS

I thought to add these warnings at the end, where the conclusions should be, but I have changed my mind because of the importance of this step. Before starting the copying of the design and doing some measurements the following things should be kept always in attention.

Dangerous voltages could appear at the shield nodes, connections and parts. As the shield is designed in the presented implementation, it can be used for measuring of voltages until 100 V. These voltages are dangerous for the life!!!. Even voltages close to 30 V in some cases can cause death. For this reason, all requirements concerning the work with high voltages must be met:

You should use only insulated leads. You should avoid touching of the shield parts (especially the banana socket for voltage measurements and the input resistor). You should keep your table clean - no metal parts or instruments shall be placed close to the shield because they can create short circuit between the shield parts. You should not touch any of the banana sockets and plugs during high voltage measurements. (The banana socket for the voltage measurement is not insulated in any way and touching it during operation can have deadly results!!!).

I would like to thank the user "granz" (see the comments), who reminded us about the following: When using the "Arduino" based DMM connected to the computer, you should be aware of that the ground potentials of the DMM is the same as the ground potential of you PC, and you should measure voltages and currents of device or unit, which have the same ground potential. In other case you risk to damage both - you computer and your device. If you are not sure, what the ground potential of your device is - then it is recommended to use the "Arduino" based DMM in standalone mode - supplied by battery pack or isolated DC/DC converter.


Step 3: The design work

The main idea of the project was to create a shild for "Arduino", which can be used for voltage and current measurements. The shield had to be relatively precise ~ 1% and to be able to display the measured data on the liquid crystal display.
Starting the design, I decided to keep the circuit as simple and cheap as possible. During the design phase, I have found that I can implement some additional useful functions without big efforts and investments. Because I have used dual opamp chip and one of the embedded amplifiers was used for the ampere meter, I was looking for a way, how I could use the second one. I decided to design with its use a voltage to current converter, which further could be used for other functions : resistance measurements, diode/LED functionality checks, NPN Transistor gain measurements. This required some additional parts, but have added more functionality to the board.
Although the main two functions could be done very precise (especially with final software trimming), the additional functions have some lack of accuracy. The error in some cases can reach ~10%. The reason for that will be explained further. Keep reading :-).
There are some simple solutions, which can drastically improve also this accuracy, but they require some additional parts and are matter of possible feature project.
The schematics and the PCB board layout are presented on the pictures.

Remarks on the schematic:

  1. On the schematic you can see two opamp instances - they both represent only one chip, but with different packages. On the PCB both instances are placed one over other. In the reality only one chip shall be soldered. This approach makes the PCB more universal - different type of packages are supported simultaneously.
  2. The same design technique is used also for the transistor. It can be PMOS or PNP BJT, and it can have different packages.
  3. This chain is optional. The devices can be omitted. When using PMOS transistor, the LED could indicate if some device is connected for measurement : high intensity - the load is missing, low intensity - the load is connected. When using PNP BJT for the VIC (Voltage to Current Converter), it is difficult to see a change in the intensity of the LED. The advantages/ disadvantage of using PMOS or PNP will be discussed further.

The "Eagle" design files are attached to the project and are available for download and free use.

Step 4: Explanation : How this shield works...

Picture of Explanation : How this shield works...

The schematic may look quite complicated. For that reason I will try to explain how the different functions work, separating the circuit in sub-blocks, simplifying them and showing how the calculations were done.

Let's start with the voltmeter. On the picture, its simplified schematic can be seen. Three voltage dividers ( for the three ranges) can be alternatively formed by use of switches controlled by the "Arduino" board. Only one switch is closed during the voltage measurement. As switches I use NMOS enhancement mode switching transistors from the type BSS123. They have typical Ron around 6-10 Ohms, which does not influence a lot the accuracy for the ranges 0-10V, 0-30V. For the range 0-100V, their Ron is taken into account, when calculating the voltage divider ratio.
The Zener diode is used to clamp the Vmeas potential ( the voltage applied to the analog input A0 of the "Arduino") at 5.6V and to protect the Atmel chip. Its clamping value is taken with the presumption, that the board will be supplied with 5V source. This Zener diode must be very carefully chosen. I took one of ten measured. It must satisfy two criteria:

  1. The clamping voltage must be not higher than 5.6V
  2. The current flowing through the diode in reverse connection, when 5V are applied on it must be close to 0. If significant current flows, this will affect the measurement accuracy and will introduce some non linearity. The diode, which I soldered was passing only 1uA.

Step 5: How the current is measured...

Picture of How the current is measured...
     You can see how the current is measured on the presented schematic diagram.
     The measured current is passed through 1 OhM resistance to the ground. Amplifier, which  output is connected with the "Arduino" analog input A1 is amplifying the voltage drop over the resistor with gain 10.
     To prevent damages, when higher then desired current is applied at the ampere meter, I have put a resettable PTC for 500mA.

Step 6: How the resistance is measured....

Picture of How the resistance is measured....
     A reference voltage with respect the positive supply range is created by the use of the Zener diode (2V). The generated in this way voltage reference is applied to the input of voltage to current converter realized by the opamp and the PNP BJT (PMOS) transistor, at which emitter (source) terminal, adjustable and commutable  resistors are connected. The voltage over these resistors is identical with the voltage over the Zener diode. The "Arduino" board controls, which of both switches will be closed, defining in this way through which of both resistors will flow current. Thus two possible current values are possible: 10uA, 2.5mA. These currents can be adjusted very preciously. The generated so current is passed through the measured device (resistor, diode, LED, transistor) and the voltage drop appeared over the device under test (DUT) is applied to the analog pin A2 of the "Arduino" board.
     For the VIC (voltage to current converter) can be used as well PMOS or PNP bipolar devices.
     At the first try I was using PMOS NDT2955 device. (I had one available, and decided to use it). The opamap used was LM358. 
Making some tests, I have found that some measured data is not stable. I found that oscillation appeared. The VIC was not stable.
The reason for that was: The maximal capacitive load, which the LM358 can drive is less than 50pF (without resistive isolation).
The gate capacitance of the used PMOS was 600pF, which was making the whole circuit unstable. Then, I have changed the transistor with PNP BJT (Bipolar Junction Transistor) 2n3906, and the circuit was stabilized.
    In other words: the type of the opamp and transistor of the VIC must be carefully chosen. The LM358 is not the best choice - it has stability problems with high capacitive loads, it has sensible offset and the output swing is not the best. If more precision is required better to be chosen an R2R (rail to rail) input/output opamp with JFET/CMOS (low input current) inputs, with low offset. 
The higher offset in my case would be useful "feature", because further, in the software tuning part, I would like to show, how this offset can be corrected by the use of the software.
Using the PMOS transistor, will allow us to use the "load/no load" function of the Ohmmeter, but could create stability problems.
Using PNP BJT has the  advantage that the circuit is stable. 
In both cases, independently, which type devices are used (OK..mostly for the PMOS), they create small accuracy problems.
    The reason for lower accuracy is the limited output resistance of both devices. What is this meaning:
Lets take the resistor range 1000 Ohm. In this case, reference current of 2.5mA are passed through the resistor, and the generated voltage is applied to the ADC input of the Atmega chip. The resistor value, which we want to measure can vary between 0 Ohm and 1000 Ohm. The voltage Vmeas in this way also varies between 0V and 2.5V. The Vce (Vds) : Collector-emitter/ Drain-source voltage varies between 0.5V-3V.  The variation of the mentioned voltage affects directly the collector-emitter / drain-source flowing  current, what finally results in worse accuracy. The described phenomena can be better understood looking on the typical NPN BJT transfer characteristics presented on the picture.
This effect can be in some limits corrected by the software, but if some non linearity  effects are available, the correction becomes very difficult.


Step 7: How the Beta is measured....

Picture of How the Beta is measured....
    The current, which generation was explained in the previous step is passed through different devices : resistors, diodes, LED's, Schottky diodes...etc. The generated voltage drop over the corresponding device is measured. This voltage can serve as information obout the functioning of the device. For example, the Vf  (the voltage drop over the device, when connected in forward direction) can vary for:
     diodes                                                           -  0.4V- 0.8V
     Schottky diodes                                           -  0.1V-0.5V
     LED   (depend on the color)                      - 1.1V-3.5V...etc.
For this check, the current of 10uA is used.
If the current 2.5mA is passed though the mentioned devices, these voltages become higher. The LED's start to glow. This is way to test securely the functionality of LED diodes. (The white ones could not glow - sometimes they require over 3V).
     The current with value 10uA is used also for the NPN BJT Beta (Hfe) measurement . The circuit and the corresponding calculation for this can be seen on the picture   

Step 8: The parts list (BOM)

Picture of The parts list (BOM)
  Part                                      Value /Name                Package

C1                                           100nF                                C0805       
C2                                           100nF                                C0805       
C21                                            10u                        085CS_1AR   
D1                                   Zener 5.1V                              DO34Z7      
D2                                      Zener 2V                              DO34Z7      
D3                                      Zener 2V                              DO34Z7              
F1               MF-MSMF050-2 500mA-                                 L1812 
                   resettable PTC
IC1/U1                                   LM358                                   SO08   0r
                                              LM358                               SOIC08
IC11                        74LVC1G14DBV                              SOT23-5 
U2               SN74LVC2G66_DCT_8                                    DCT8        
LED1                     GREEN SMD LED                  CHIPLED_0805
LED2                         RED SMD LED                  CHIPLED_0805
Q1                                       BSS123                                SOT23                 
Q2                                       BSS123                                SOT23       
Q3                                       BSS123                                SOT23       
Q4/T1                                   2N3906                                  TO92    Or
                                          NDT2955                              SOT223    
R1                                        10K 1W                             0207/10     
R2                                                 10                                R0805       
R3                                               510                                R0805       
R4                                               10K                                R0805       
R5                                                 2K                                R0805       
R6                                               1K1                                R0805       
R7                                               510                                R0805       
R8                      10K   (trimmer pot.)                          RTRIM64W    
R9                                      1 1W 1%                              0207/10     
R10                                           1.5K                                 R0805       
R11                                            12K                                 R0805       
R12                                           1.5K                                  R0805       
R13                                             300                                 R0805       
R14                                             300                                 R0805       
R15                                             300                                 R0805       
R16                    250K  (trimmer pot.)                          RTRIM64W    
R17                    1000  (trimmer pot.)                          RTRIM64W    
R18                                            10K                                  R0805       
S1                                  microswitch                            B3F-10XX    
S2                                  microswitch                            B3F-10XX    
U$1    Banana connector socket   4mm    
U$2    Banana connector socket   4mm    
U$3    Banana connector socket   4mm    
U$4      16x2 LCM (Character liquid crystal display module)  . Very cheap (2.25 USD) at ebay.   Not needed if you want to use only the serial monitor mode.   
Header connectors - male and female 
DUT      IN GND e c b e                        1X06
JANALOG  6x1F-H8.5-L14.5mm            1X06        
JANALOG1 POWER                             1X06        
JHIGH    10x1F-H8.5-L14.5mm              1X10        
JLOW     8x1F-H8.5-L14.5mm               1X08

Step 9: PCB's...

Picture of PCB's...
   The PCB's were ordered in the fab and after two weeks they came.

Step 10: Soldering...

     All the parts were soldered. I have decided to solder female header for LCM. On the LCD module, I have soldered pin headers. In this way I can simply attach and detach the display when needed or to use it for other projects  :-).
    When was possible, I tried to chose the most precise parts, from those available at home.

Step 11: Some explanation about the PCB

On the pictures can be seen how the tested devices (resistors, diodes, Schottky diodes, LEDS are inserted)

Step 12: Let's start the tests

Picture of Let's start the tests
    As first step I wanted to test the LCD connection and control correctness. For that purpose I used the well known "Hello world" example available in the "LiquidCrystal" library with small modifications.
   My LCM has different connections, as described in the example. The reason for that is - I wanted to have the "Arduino" digital pin #2 free, because I wanted to use the interrupt attached to this pin for other purposes.
     The pin connections are the following:

   LCM 1602                  Arduino

D4                                         6
D5                                         5
D6                                         4
D7                                         3
E                                          11
RS                                       12
RW - connected to ground

     Additionally, I have connected the display back-light  LED "K" pin to the "Arduino" digital pin 10. I wanted to be able to fade the back-light and to create some effects  ( "Overflow") .
     The modified "Hello world" sketch is attached.

Step 13: Functions definition

Picture of Functions definition
     The next step was to defined the all functional modes. I have counted 9 of them. They are shown on the picture. 
     Now the idea was to test the functional mode selection. I wanted that all the modes roll one after the other in one direction, by pressing the switch called "MODE". There are two switches on the shield board - the first duplicates the reset button of "Arduino", the second one is the "MODE" switch. As mentioned before, this switch is connected with pin #2 of the "Arduino" board. To this pin is attached the hardware INT0. Using the interupt, I have implemented debouncing of the switch. The debouncing and the menu state machine was tested with the attached sketch.

Step 14: The DMM software

     After successful finishing of the previous tests, the main working DMM software was written.
The code is attached in the *.ZIP file.
I will explain only some main functions, the other simply repeat them:

The function for voltmeter (range 0-100V) :

void V_100() {
  digitalWrite(v100, HIGH);
  lcd.print("V-meter V=<100V");
  Serial.println("*        Voltmeter mode - Range 0 - 100 V             *");
  lcd.setCursor(0, 1);

prints some messages on the screen and calls the function voltage_meas() :

void voltage_meas() {
  acc_value = 0;
  for (int i=0; i <= 15; i++){
  curr_value = analogRead(A0);  
  acc_value = acc_value + curr_value;
  curr_value =  int(acc_value/16);
  if (curr_value == 1023) {
    meas_overflow(); }
  else {
switch (MODE) {           
             case 1:
    disp_res = ( curr_value*supply*20)/1024*coeff_v100 ;
             case 2:
    disp_res = ( curr_value*supply*6)/1024*coeff_v30;
             case 3:
    disp_res = ( curr_value*supply*2)/1024*coeff_v10;
               break;  }   
    lcd.print("   V = ");  
    lcd.print(disp_res, 2);  
    lcd.print(" V");
    Serial.print("*                      V = ");
    Serial.print(disp_res, 2);
    Serial.println(" V");

, which take 16 consecutive samples and
averages them. If the result is less than 1023, it converts the ADC word to corresponding voltage value and displays it on the screen. During this calculation, some trimming factors are added. First of them is the measured preliminary supply voltage (it is used as reference for the AD conversion), the second one tries to correct  the devices mismatch. It is close to 1.00, but in some cases can differ few percents. This coefficient is determined empirically during the tuning phase. Explanation will follow.
If the result after the averaging of the 16 samples is 1023 the "meas_overflow" is called.

void meas_overflow() {
  lcd.setCursor(0, 1);
  lcd.print("   OVERFLOW!!!  "); 
  Serial.println("*                     OVERFLOW!!!                     *");
  lcd.setCursor(0, 1);
  for (int i=0; i <= 101; i++){
  analogWrite(back_light, brightness);   
  brightness = brightness + fadeAmount;
  if (brightness == 255) {
    fadeAmount = -fadeAmount ;

In this procedure the back-light is faded and a warning is displayed.

On the pictures can be seen the functioning DMM in different modes and functions.

Step 15: Software tuning of the accuracy (part 1)

    Let's as first step to trim the voltmeter.
I will show how to do this for the range 0-10V. The other ranges are trimmed in the same way. 
To trim the accuracy for a given range the best approach is to chose trimming reference voltage, as close as possible to the upper limit of the range. Once trimmed for this voltage is assumed that, because of the linearity of the voltage divider and the AD conversion , the whole range is covered with the same accuracy. To trim the voltmeter for the range 0-10V I have taken new 9V battery.
As first step I have measured the power supply voltage at the "Arduino" board supply header. In my case it was 4.91V.
This voltage serves as reference for the ADC of the Atmega chip. It is included in the formula for the conversion of the taken ADC reading to voltage value:
                  disp_res = ( curr_value*supply*2)/1024*coeff_v10;

, where :
        disp_res  - is the voltage value displayed on the screen;
        curr_value - is the averaged digital reading;
        supply - is the measured power supply voltage ;
        coeff_v10 - is the software trimming coefficient 
     The next step is to measure the battery voltage by the standard DMM and to write the value.
     After that we measure the same battery with the "Arduino" based DMM. Based on both measurements we calculate the trimming coefficient   coeff_v10 as quotient resulting of the division of the first measurement result by the second measurement result.  In my case I have measured the battery with the standard DMM to be 9.51V. Measured by the "Arduino" DMM it was 9.34V.
The correction coefficient was calculated as:
     coeff_v10 = 9.51/9.34 = 1.018
The resulting value is assigned to the coeff_v10 in the code.
After recompiling and loading the code it is seen that after the trimming the "Arduino" DMM shows the target value.
I would recommend that this coefficient is calculated for few voltages measured with the same range settings and the final value entered in the code is the averaged of all calculated.

Step 16: Software tuning of the accuracy (part 2)

Let us trim the ampere meter.
The voltmeter trimming was easy - the error was caused only by the spread of the resistor values in the voltage dividers.
In the ampere meter the sources of errors are mainly:

  • the resistor spread of R1 (see the picture in step 4). Its value is 1 Ohm, and the exact value of the used device is difficult to be measured precisely
  • the voltage gain of the opamp - caused mainly by the resistors R2 and R3 values spread
  • The offset of the opamp Voffset. As mentioned before LM358 is not the best choice for this project ( I had one available and I have used it. That is the reason why the PCB supports also the SO08 package - not often used in our time). In the datasheet of the chip can be seen that the offset can be 7 mV. With our current to voltage transfer solution, this can introduce a constant current error of 7mA. It can happen that no current is passing, but the ampere meter shows 7mA, and vice versa : a current of 7 mA can flow and the device can show 0 mA.

All these errors must be cleaned up by the software.
As first step we have to determine the exact value of the R1 resistor. For that purpose I used a constant current generator.
I have applied 189.9 mA input current and I have measured 186.7 mV on the resistor R1. Its value is calculated to be 0.98315 Ohm. This number will be used also as correction coefficient.
Now remain two other parameter, which must be calculated / measured : the real voltage gain of the opamp and its offset voltage.
To determine them we need to make two separate measurements at two different currents. The measurements are : we fix the current by the current generator and we measure it once with the standard DMM and once with "Arduino" based DMM. The voltage on R1 is also measured during this procedure. Here are the results which I had :
Applied current Measured current Voltage over R1
(standard DMM) "Arduino" DMM (standard DMM)
[mA] [mA] [mV]

189.9 186 186.7
73.1 71.9 71.7

The opamp offset voltage is added to the voltage drop over R1, and the resulting potential is amplified 10 (corrected with the gain error coefficient) and finally converted by the ADC.
This process can be modeled with the following equation:
( VR1+Voffset)*coeff_A_gain=Imeas;
VR1 - is the voltage over R1;
Voffset - the input opamp offset voltage;
coeff_A_gain - gain error coefficient, in this case has unit of Siemens [S];
Imeas - measured by the "Arduino" DMM current

Based on this equation and the measured data, replacing Voffset with "x" and coeff_A_gain with "y" a system of two equations and two unknown variables can be written:

(186.7 + x ) * y = 186
(71.7 + x ) * y = 71.9

186.7y + xy =186
71.7 y + xy = 71.9 ; extracting from the first the second equation

y = 0.992174 - the gain error caused by the resistor value spread of the gain defining resistors R2,R3

X = 0.767 mV - the input offset of the opamp (not so bad...)

The final code for the ampere meter now would have the following definitions:

float coeff_A_gain = 0.992174;
float coeff_A_res = 0.98315;
float opamp_offset = 0.000767;

The calculation of the current can be done with the following equation:
disp_res = (((curr_value*supply )/1024 - 10*opamp_offset)/coeff_A_gain)/coeff_A_res*100;

(see the step 14 for additional information)

Step 17: Trimming the ohmmeter

How to trim the ohmmeter I will show for the range 1000 Ohm. The same approach is used for the other range.

Before applying the software trimming some additional measurement must be done.

  1. The voltage drop over the Zener diode D2.
  2. To have stable current I have changed the following row in the main program ( loop () ) : digitalWrite(curr_mode, LOW------------------->HIGH); - in this way I can keep the current stable and to measure it during the welcome procedure. The current flowing from the PNP/PMOS collector/drain terminal to ground should be measured (picture 1)
  3. The same current is measured again but with serial connected resistance of 1KOhm (the max for the range) - picture 2. The voltage over the resistor should be measured too.

I have measured 2.5 mA in the first and 2.48 mA in the second measurements. My resistor was 997 Ohm.

Now we need to process the sampled data. To be able to make this we need to calculate also the Vce/Vds - the voltage drop over the transistor for bot cases.

This voltage - for simplicity I will write Vce is calculated using the following formula:

Vce = Vsupply - Vzener - Vr, where

Vsupply is the measured supply voltage of the "Arduino" board;

Vzener - the voltage drop over D2 (measured at step 1 above);

Vr - the voltage over the resistor - measured at step 3. For the first case is 0 V.

The calculated Vce and the corresponding currents are filled in excel file.(picture 3). Graph is done, and trendline corresponding to the date is shown (straight line). The equation of the trendline is displayed - it will be used for the calculations.

In my case Ir = Ice = 0.0081*Vce+2.4773 - using this formula we can calculate always the current Ice flowing through the measured resistor and also function of the voltage over the resistor, which is sampled by the ADC. Here is taken the presumption, that the dependence Ice of Vce is linear, what is commonly true.

Finally we calculate the resistance using the Ohm formula:

R = Vr / Ir

here is how the modified code looks like:


float V_zener = 2.16;
float Vr = 0;

float Vce = 0;

float Ice = 0;

float coeff_v100 = 1.01;

float coeff_v30 = 1.011;

float coeff_v10 = 1.018;

float coeff_A_gain = 0.992174;

float coeff_A_res = 0.98315;

float opamp_offset = 0.000767;

volatile unsigned long last_millis = 0;

void R_1000() {
digitalWrite(curr_mode, HIGH);



lcd.print("Ohmmeter R=<1000");

Serial.println("* Ohmmeter mode - Range 0 - 1000 Ohm *");

lcd.setCursor(0, 1);

acc_value = 0;

for (int i=0; i <= 15; i++)

{ curr_value = analogRead(A2);

acc_value = acc_value + curr_value; }

curr_value = int(acc_value/16);

if (curr_value >= 513) { meas_overflow(); }

else { Vr = ( curr_value*supply )/1024;

Vce = supply - V_zener - Vr; Ice = 0.0081*Vce + 2.4773;

disp_res = Vr / Ice * 1000;

lcd.print(" R = ");

lcd.print(disp_res, 1);

lcd.print(" Ohm");

Serial.print("* R = ");

Serial.print(disp_res, 1);

Serial.println(" Ohm");

delay(250); }


As conclusion:

The presented multimeter is designed in the simplest way, trying to embed as much functions as possible. This approach brings some undesired features - the input resistance is very low, the accuracy in comparison with the standard fabric DMM is lower. The reasons for that are :

the matching of the discrete elements (mainly resistors);

not enough accuracy of the microcontroller ADC - it is 10 bit, but allows error of 3-4 LSB;

the digital noise affecting the analog measurements;

not well fixed supply voltage (it can vary when the DMM is connected to different computers), which serves as voltage reference for the ADC converter;


Despite all disadvantages, in this work was shown, how using software tricks, the accuracy of such device can be drastically increased - starting with multiple ADC readings, their averaging and all additional software trimming. I think that similar project would be interesting for students willing to get deep inside the data measuring and processing theory. It can be used also as DMM replacement for home electronic projects, which do net require more complicated measurement tools.

Thank you for the attention!

yamil1111 month ago

Hi Milen, im doing this project, and im wondering how i measure the current?, i mean, no how works the amperimeter or the VIC, im saying how i conect to the circuit that i want to measure? the way that connects a regular amperimeter (in series to the circuit) or the way that i connect a voltimeter (in paralel to the device measure)?

Milen (author)  yamil1111 month ago
Hi Yamil111,

I have tried to explain this on step 2.... never mind,
the idea is the following - if you use the DMM device connected to you PC, then you can measure only currents which are sourced by devices having the same ground - in this case you connect only one terminal of the device (the red one), the current loop is closed through the common ground. In the case you want to measure a current flowing in some network, with unknown (different form you PC ground potential), it is better to supply the whole assembling (arduino+the shield) by a battery pack or isolated DC/DC converter.
So you use the whole assembling as standard DMM. You have to be aware, that this device does not measure negative currents - it means - the red input connector shall be always connected to the more positive node of the measured branch (the node, from which the current flows out). The black one (the local ground of the assembling supplied by battery) shall be connected to the node with less voltage potential (the node where current flows in). In this way it is possible to measure currents flowing in branches, which potential could be kilo-volts. In all cases, you have to be aware of the possible high voltages and to work carefully.
yamil111 Milen1 month ago

Thank you Milen, i understand what you're saying. Sorry, i miss up what you explain in step 2. But now, you clarify my doubt. Thank you, and excellent project.

AvrDon4 months ago

Hi Milen

Hi can I convert your DMM project to read voltages say from 80v ac and 150v volts ac. I'm wanting to building ac voltage monitor for single or 3 phase that I can read with the w5100 ethernet module was thinking a web page or telnet.



Milen (author)  AvrDon4 months ago
Hi Donnie,

You can rectify the AC voltage to DC and read its value. You have to change the voltage divider resistors (make them higher) and to change their ratio - at 150-160 V AC, after rectification, at A0 you must have 5V. You have to be aware that the AC voltage is measured as RMS - the amplitude is higher and the generated DC voltage is different. You have to calibrate the voltmeter with the proper coefficient. May be you have to add some correction because of the voltage drop over the rectifier diodes. And must be very care full - the banana sockets are not insulated and these voltages are dangerous!
Mr. E4 months ago

A quality project and great presentation ! The design discussion provides great information useful well beyond the scope of this wonderful project !

Have you considered storing additional calibration data in EEPROM to help deal with your non linearity concerns?

Milen (author)  Mr. E4 months ago
I did not considered this, but under desire it can be done. This is nice idea for people who want to go deeper in the problem. I preferred to try to correct mainly the linear behavior errors. Practically with careful device choice you can have only such kind. This is most valid for the transistor choice - if the transistor has low Vsat voltage, for Vds/Vce voltages over Vsat it has more or less linear behavior. The used NTD2955 is not the best choice, but using the PNP improves the linearity. Also suitable PMOS can be chosen so that it works also in the linear regime, and than the non linearity problem disappear. But, for the pure science...your idea is very good. It require more than two measurements and making some kind of look-up table or trying to find the equation, which models the performance...
achand84 months ago

Awesome !

granz4 months ago

To all potential builders: If you are powering this thing from your computer USB port you need to be very very careful what/where you are measuring. The USB port ground is usually earth grounded. This means that you can't go about measuring taking measurements with both leads on other mains-powered devices like you might with a commercial meter. Consider what happens if you try to measure a current in a circuit that is also mains powered, and you connect you ground lead somewhere in the circuit which isn't earth ground (Hint: you have created a short to ground via your PC). Commercial meters are either A) battery powered or B) isolated if they are mains powered. If you want to keep things safe, just power the Arduino from a battery pack.

dieferman4 months ago

Excellent , Thanks For Sharing !!!!

murfmv4 months ago

Milen, very nice job. Easy to follow good idea. How does one go about having a shield printed?

Milen (author)  murfmv4 months ago

Hi Murfmv. I have attached the design data. It is in "Eagle" format.

Download the ZIP file and un -zip it in some folder.

You can download the free lite version of the tool from here :

Install the program, start it and in the File menu>open one of the files (Schematic or Board) - the other will open automatically. Work with the board window. Press the "Ratnest" button - like "X" . Yo have to print separate the top and the bottom layers if you want to use the ink transfer method.

The top layer must be mirrored (in the print menu). Scale factor must be 1.

Solid and black checked. For the top layer - in the layer menu, first make all layer invisible, and then activate the following layers Top, Vias, Pads, Dimension.

For the bottom layer (not mirrored) activate the layers Bottom, Vias,Pads,Dimension.

The files are checked with the Iteadsudio checkset. They can be sent there, and you will have 10 boards for ~ 25 USD. If you want, I can attach also the gerber files.

Build_it_Bob4 months ago

Milen , this is a very impressive Instructable ! We all know that there are professional meters that can be purchased , but the impressive thing is this Instructable explains so much about what goes on inside a meter.

I feel ( and we are nearly the same age :) , that in our lifetime we have seen such an escalation in technology . I am not an expert in any aspect of electronics , but I am a lifetime student of this fascinating field. My father was enrolled in National Technical School correspondence learning and I was able to look through all his course materials in my early teens . Getting a basic understanding of Vacuum Tube theory , and then moving into transistor theory was so fascinating .

Integrated circuits started to simplify design , but we don't always take the time to appreciate what goes on inside and the engineering it took to create the special function chip.

Radio Shack had a great book out that I purchased on how to use your DMM , and that book helped me a lot . I hope that this Instructable gets a lot of attention as it covers in depth how a DMM works , and shows just how much design goes into a multimeter .

I think this would be a great project for College electronics students to build as it ties together electronics measurement theory and uses the Arduino controller which can be used for so many creative things.

I am going to download this Instructable as it is a keeper ! I will read through it more in depth as I am sure there is some interesting areas that will help me further my understanding.

Truly , I thank you for all the time and effort you put into this Instructable.


Milen (author)  Build_it_Bob4 months ago
Hi Build_it_Bob,

Thank you for the nice words. I also went similar way. I started to solder some parts when I was 12. My first working detector receiver I did in 1977. Long history from this time... :-).
I want to mention - the design is not the perfect one, and no very universal.. - it has few week points : the low input resistance, the accuracy, the ranges comparing with standard industrial DMM. But his main purpose is to show a way of thinking - how using few devices a lot of functions can be implemented, how to have relatively accurate device, even you use standard and not trimmed building parts...This instructable is still not finished. Remain few additional things to be done - the ohmmeter trimming...and may be the conclusion.
aaguilar214 months ago
does anyone know some good books for easy to learn basic on electronics my nephew wants to learn n build
Milen (author)  aaguilar214 months ago

How old is he? Does he understand formulas?

May be the best solution should be to buy him some design kit with possibility to experiment with plenty of circuits and to learn the electronics practicing it... this will keep his interest, instead reading some book with theory.

aaguilar21 Milen4 months ago
he 14 n i have bought him some kits before n he really good but now he wants to take things apart but i rather he made stuff on his own from parts from old radios n stuff like that ... but i would like him to learn the basics
Milen (author)  aaguilar214 months ago

I did a small research in the seems that a lot of people recommend more or less the same books:

and a classical example:

There are also some very useful sites like:

I hope that this would give you him a nice start.

and thank yu for yur replys :)
thegoodhen4 months ago

That's nice! I am just thinking about designing and building my own universal multimeter-but mine will be benchtop and higher end. I will use dedicated adc chips, voltage references and relays. But... I have to point out that your design has EXTREMELY low input impedance. I understand that you don't wanna go all the way into megaohms because of noise, but maybe you could add a low noise input buffer?

Milen (author)  thegoodhen4 months ago
You are absolutely right. The input resistance is low. I decided to make a compromise, also with the ranges... only to keep the schematics simpler and cheaper. But I think that for applications, for which this DMM could be used ( Arduino projects, digital projects... etc), the low resistance would not be such a problem. I wish you good luck with you project, and I hope that we all will see after a nice Instructable describing it.

thegoodhen Milen4 months ago

I see. I didn't understand the reasoning behind the low resistance, but now I do-it's to keep the complexity down. I wasn't sure if you are fully aware of this being a flaw, so I wanted to point it out! I would also like to mention that I am not trying to nitpick the flaws of your (I think brilliant) design, but with this in mind... Is the spacing between the rails sufficient? It seems like the 100 volts might easily spark over... Maybe that's just me though.

Milen (author)  thegoodhen4 months ago

As I wrote, before - I did compromise also with the ranges. May be 100V is not the suitable range, but here is another problem - I do not have any insulation of the banana socket - if there is really high voltage, it can be dangerous for the users. I did not want to have any dangerous high voltages on the board.The Zener diode is able to pass over 100 mA. This current multiplied by the input resistance of 10 KOhm, gives a voltage drop over 1000V at the input resistor. It is 1W and for some time will survive. But I do not suggest, that anybody tries that ! :-).

I want also to mention something additional about why I put so small input resistance - I did not want to use a buffer. I do not know how exactly the AD conversion is done in the Atmega chip. There is Sample & Hold circuit, but I do not know is there any buffer inside the chip before the S&H circuit. If no buffer exist, it is possible that the time constant of the S&H circuit capacitor and the big input resistance is enough high comparing with the sample time to introduce huge error. (I had some problems with ADC's without buffers before the S&H circuit, which were sampling false value because of the high output resistance of the previous circuit). OK, here the filtering capacitor of 10 nF helps, but with higher input resistance this capacitor also will create time constant and if the measurement was short in time, it would be also not correct.

msabhi634 months ago

ommg///// more possibility......

rpotts24 months ago
oh! realistically, how would this compare to a harborfreight model? same? better? WAY better?
Milen (author)  rpotts24 months ago

The described DMM has some limitations - The ranges are not the most appropriate.

The reason for that - the ADC has reference voltage 5v - that defines an input range for Vmeas 5V. This DMM can be done relatively precise inside this region, but comparing with even harborfreight model, it has the following disadvantages:

1) the ranges...

2)the accuracy - for the industry DMM special dedicated chips are used, which are trimmed internally, have the required resolution. For the "Arduino" based DMM, the resolution is limited to 10 bit...

3)the input resistance is relatively low...

In other words - the proposed solution is cheap, relatively precise, but with some limitations

rpotts24 months ago
Nice writeup! So you used a combination of opamps and voltage dividers for the ranges?
Milen (author)  rpotts24 months ago


The voltage dividers are used for the voltage measurements...this approach use also the professional voltmeters. For the current measurement using voltage gain amplifies, may be is not the best solution, because the error is also amplifies. There a different set of very precise resistors is used. Their connection is done by mechanical switch, which contacts have practically 0 resistance and do not influence the accuracy. I wanted to use this approach for the current measurements (also for the voltage), I had to use some kind of relays (reed) , what would make the circuit more expensive and heavy. That is the reason I have only one range for the current measurements.