Picture of Distance measurement with radio waves
First of all, we want to excuse us for our bad English. (German pupils :D)
We invented a new, inexpensive device to measure distances up to 1.5km (about 1 mile) with accuracy about ±5 Meter (15 feet). The use of radio waves makes it possible to measure without the target being in sight. This means, you can measure distances through whole buildings.There are many rangefinders available, which are working with sound waves or lasers. A disadvantage of distance measurement with laser rangefinder is that you must center up the beam to the receiver and ensure that there are no obstacles along the laser beam.
Schematics and layouts are 100% own work, no copy and paste, only the transmitter and receiver modules had been bought.We already took part with this project in a German youth science competition called „Jugend-Forscht“ and won the 1st prize.
Remove these adsRemove these ads by Signing Up

Step 1: Step 1: Basic idea

Picture of Step 1: Basic idea
Step 1: Basic idea
To put it simply, the main part is an exact stopwatch, which measures time with a resolution in nanoseconds. It is used to stop the time the emitted radio wave is travelling. Because the spreading rate of radio waves is identical with velocity of light, you can calculate the distance between the two devices (measuring points) by a given travel time of the radio waves.The stopwatch contains a crystal with a clock rate of 30 Megahertz and a couple of decade counters (High- Speed CMOS). To display the stopped time, binary outputs of the decade counters must be converted to be easier readable on 7-segment-displays. The process of a single measurement:
1) The measurement is being initiated (started with a button) by the user at the basic station (1st point)
2) Counter starts, at exactly the same time a 434 MHz AM transmitter module emits out a 1st radio wave
3) The radio wave gets into the receiver at the 2nd point, and immediately starts the 2nd transmitter at a frequency of 868 MHz
4) The 868 MHz wave is being received at the basic station and stops the counter
5) The travelling time can be read on the display.
1-40 of 87Next »
gvillenap7 months ago

Sir, my tesis is your project, is there anyway that we can have a small talk? I really appreciate some help with it. I was planing to use a uC arduino due (84 MHz) and 2 tranceivers (NRF24L01, 2.4Ghz) to comunicate them. but I found troubles in there. Please I really need some help. Thanks. Giancarlo

I am actually trying to do this as well. Have you found any success?

gocreeps14337 months ago

sir i would like to ask if i can use this transceiver.

UHF 2.pdf370 KB
gocreeps14337 months ago

sir you project was awesome and great.

i would like to ask sir if i can use a rf transceiver in this project and i'm confuse about the purpose of using a walkies talkie base on some comments that i have read. :)

ironstien7 months ago

can someone explain the use of all the schmitt triggers in the circuit ...

ve6cmm9 months ago

Another way to do this would be to modulate the transmitted signal, and have that modulation at the far end modulate the 800MHz signal. You could then compare the phase difference of the transmitted signal with the one received, change the modulation frequency if needed to get better accuracy, and you would also eliminate the RX to TX time at the far end. All measurements could be made at audio frequencies, a scope could be used to compare the sent and returned waveform, and would allow you to see any interference in the signal. There are lot's of great ideas for this scheme here! Thanks for getting me thinking.........

it seems to me that if you guys used walkie talkies conected to a microcontroler instead of building your own custom radios you would be able to have greater accuracy (maybe) and a lower cost

If people are looking for cheap radios to try this out, I can recommend the Baofeng UV-3R. It can be run at 1 or 2 watts, is dual band, VHF/UHF and I think 2 of them can be set up to work as a cross band repeater. The nice thing about these is that they are made in china and don't aim to comply with North American band plans, so they transmit on the entire vhf and uhf bands without restriction, which is great for finding and using "white space" where there will be no interferecne. They also have a simple VOX feature which could help with the cross band repeat.

Jones Electronic (author)  kurtzthegreat3 years ago
we didnt build our own radio, described on step 5, we bought some and i think the costs, about $75, are very low. another advantage of building it like we did you dont have to programm some microcontroller, in our point of view this way seems to be easier. and the accuracy depends only on our clock signal with 30 MHz, descibed in step 3.
but thanks for your request!
@Jones Electronics: dude can u just mail me a schematic with better quality and visibility to this e-mail address ""
here's the best schematic
thanks a lot bro.....I owe you one
Reiff1 year ago
Okay, obviously not for me, to complicated. I was looking for some way to find another persons (on a 2-way hand-held radio) approximate location. I always wondered if there is a simple way to find out where there direction is, or how far the other person is from my radio. Maybe there isn't a way, because I know tech people always like to say to dummy's "It's not magic" (isn't that right!).
sierahotel Reiff10 months ago

They call it Fox Hunting, but it's not a digital computerized method you might see on csi, Fox Hunters use directional yagi antennas and goal post-like dipoles and rotate the device to find the null points of the signal in attempts to figure out what direction it's coming from. Apparently it is not easy to learn and takes a lot of practice.

Could this device send a signal through an engine block?

No, you can't measure through an engine block using radio waves. If you've ever tried to get a gps fix in an area of tall buildings, you've seen the position jump wildly around, because a radio wave will eventually reach every point in space, but often takes a "long path" to get there. The longer flight time throws off the accuracy of measurements. Also, if the engine block is grounded, or acting as a ground, the radio waves will stop there and flow to earth, instead of passing through and continuing on to you're receiver.

Jones Electronic (author)  TheArsonator1 year ago

Of course it can! But i think it will weak the signal so it maybe not be able to transmit it more than 50 meters

Sweet. Does that affect the accuracy?

I'm Working on a very similar project using two arduinos with transmitters and receivers to measure their distance from one another. This post was a great help for the way I'll put the formulas in the algorithm inside programming.
For long distances though, atmospheric attenuation and dieletric materials contained along the waves path can change too much the final result.
I would advice a temperature e humidity component to adjust the calculations according to actual atmospheric conditions.
congratulations for your work !!

SirThaiSNU1 year ago
Thank for sharing Jones.
It is nice project. Can you upload the schematic at the second point? How can you connect RX433MHz and TX866MHz? Thank you.
drstichl1 year ago
Well, thanks to wikipedia :-) I could answer my question about the frequency myself, (868MHz = SRD, Europe)
drstichl1 year ago
Wow, wonderful and impressive project!

In fact, i've been looking for and thinking about something like this for quite a while. 5m range accuracy (or ~15ns timing accuracy) is quite impressive already, truely! Have you made progress, however, in improving on that? As far as I understand from your post(s), the crucial point is the counter, right? I'm no expert in elctronics (physics rather), but what about the other issues, trigger error, delay error, (...?), How much influence do they have?

Your 1st frequency (434MHz) is in ISM-A band. Is it correct that you need a license for that? For the second frequency I cannot find an ISM band, neither B nor A. What are the regulations for using that frequency? Would you think it possible, reasonable, to construct a similar system at lower frequencies, such as the ISM-B band at 13MHz, or even lower?

Thanks in advance for your reply!
halamka2 years ago
Maybe each character in a computer line is stored in a 1 x n matrix. That way, for example, a microprocessor can search for parenthesis. Then a division / search is made. It seems slow for a computer. There are no fast computers today. In 1970 there were fast computers that used "FORTRAN". The gates were set up ahead of time, called compiler.
halamka2 years ago
So, some of the 7 chips convert the binary to decimal. I guess a z80 microprocessor with 2 extra counters can display a 24 bit color picture. I guess a z80 microprocessor can read and write to a usb "flash " memory. Are there plans to produce COMMODORE Computers?????????
George.cn3 years ago
Hi Jones, I would like to build your circuit but the components list doesn´t match with the schematic, for instance you have 74HC4543 in parts list , I couldn´t find it in schematic, could you add more details please, thanks.
Jones Electronic (author)  George.cn2 years ago
We've used the 4511 instead of the 4543, they do the same things but have different pin connections, sorry for the confusion
could you mind to explain about circuit design..
rajesh932 years ago
chouskikou3 years ago
Hi guys, I am very impressed with your project, my son is trying to do something similar, do you mind me asking if you were able to purchase the transmitter receiver off the shelf, they need to buy something to achieve the distance measurement, they are in a project to measure the location of a book in a library so they need three of the counters and one receiver/transmitter board to emben within the book. any help appreciated

Jones Electronic (author)  chouskikou2 years ago
Hi Chris,
at the moment we're not able to produce some of this counters with the needed accuracy so you can use them and get reliable data. we've also have not testet the project with 3 of these module and got good data, sorry

Jones Electronic (author)  chouskikou2 years ago
Hi Chris,
at the moment we're not able to produce some of this counters with the needed accuracy so you can use them and get reliable data. we've also have not testet the project with 3 of these module and got good data, sorry

invent4you3 years ago

Good job!
I would like to build your circuit to use with a project I am working on. Can you explain the use of the 4040 ic's in the schematic?

Hey there,
tahnks a lot man !
The 4040 are used to count down the delay of the transmitter moduls. As you calibrate the circuit you will get a specific delay of these moduls. With these three counters you can "delete" this delay. It works like this:
While the set count (delay of the moduls) isnt reached is the second Flip-Flop not set, so the count Enable of the 4510 is HIGH.
As the 4040 reached their value the Enable Pin will be LOW, and the actual time of flight will be counted.

That is all. Simple but it works perfect :D
Hope you understood everything an knew now what the 4040 have to do in this circuit

It makes perfect sense. I have been evaluating transmitters and receivers and the issue I am working through, thought wise, is how to account for the differing delay interaction between some of the hardware. Thanks to you, I now know how. Thanks again for your help

Jones Electronic (author)  invent4you2 years ago
I hope I understood you the right way, you've got delays which are not constant. If this is your problem you've got a huge problem. My circuit only works with constant delays, which have to been measured at the beginning of a measurement and set with the 4040
I hope I could help you
gblewitt2 years ago
Not true. The intersection of 3 spheres has 2 points. Think of it this way. The intersection of 2 spheres is a circle. The intersection of a sphere with a circle is 2 points. If you are on Earth's surface, then the Earth effectively is a 4th surface that resolves the ambiguity between the 2 points. More realistically, just an approximate position will throw away the wildly inaccurate position.
udhayavanan3 years ago
hi jones. it is very nice. can you let me more informtion of your project. pls. kindly tell your mail id.
luogang3 years ago
hello, very nice projict. i'd like to coorperate with you to make this project more perfect and even make it a good tool in engineering. please sent me an email, looking forward your reply.
jwzumwalt3 years ago
I have been waiting to see someone tackle a radio range project. Some aircraft use "height above ground" measurement by using phase shift instead of time. A quick short RF burst is fired at the ground and a measurement is made of the reflected receiving pulse's phase shift. This method requires less precise electronics.

It probably would be quite simple for a low power/speed micro-controller to work. I belive there are some common chips that automaticaly calculate phase shift; perhaps out putting a voltage. Wouldn't it be nice if a low cost digital phase chip could be found.

Anyway, you did a nice job, thanks for sharing.
Of course we know this other method, but they use the reflection. doing so you only can measure the distance to the reflection object. With our project we can measure through most objects without any optical connection, like it needed by laser distance measurement. So this is our advantage.
But your also right, you could solve this problem by using a microcontroller. In our oppinion a microcontroller is much to much for this simple but intelligent project.
1-40 of 87Next »