In this chapter we will go through:

1. Series Circuits

2. Voltage Divider Rule

3. Applied Voltage

4. Kirchoff's Voltage Law

5. Power in Series Circuit

6. Effects of Open in Series Circuit

7. Effects of Close in Series Circuit

8. Designing a Series Circuit

**Signing Up**

## Step 1: Series Circuit

In a series circuit:

1. Resistance is additive

2. Current is constant

3. Voltage drops are additive

Click on the images attached to this lecture to see what a series circuit looks like.

## Step 2: Series Circuit 2

Exercise 1:

R1 = 10 Ω

R2 = 50 Ω

R3 = 60 Ω

Answer:

RT = R1+R2+R3

RT = 10+50+60

RT = 120 Ω

## Step 3: Series Circuit 3

RT = VT / IT

Exercise 2: A circuit has a total voltage VT of 5v and a total current IT of 2A. Find the total resistance RT.

Answer:

RT = VT / IT

RT = 5 / 2

RT = 2.5 Ω

Because current is constant or the same throughout the circuit, all we have to do is find one value of current and we can find the current for every part of the circuit.

## Step 4: Series Circuit 4

Answer:

IT = VT / RT

IT = 5 / 16

IT = .3125A or 312.5mA

IR1 = 312.5mA

IR2 = 312.5mA

IR3 = 312.5mA

Voltage at point A = 100V

Voltage at point B = 60V

Voltage at point C = 0V

Since the voltage flowing AFTER R1 (10kΩ) would only be a total of 100V. Therefore,

VR2 = (120*20)/60 = 40V

THEN, Voltage at V2 after Voltage Drop is:

V2= V1-VR2

V2= 100-40

V2= 60V

Correspondingly, the voltage flowing between R2 and R3 is 60V. Hence the equation must follow:

VR3 = (120*30)/60 = 60V

Then the voltage after passing through R3 (30kΩ) is:

V3 = V2 - VR3

V3 = 60-60

V3 = 0V

very comprehensive. Thx

thank you for your feedback.

http://www.cirvirlab.com/simulation/kirch_2_real.php

i have been busy with work and my car lately. my next chapter will cover parallel circuits. i should be able to publish it by the end of january.

kareen.

I think it is a reasonable request, so I shall work on finding relevant clipart for this chapter. I value all of your comments, questions and suggestions highly, and I take them all in consideration.

If you don't understand something and need further explanation, please don't be timid with your questions, i will try to answer them to the best of my knowledge.

Thanks,

Kareen

Thanks