I have invented a fiber-light system for Olympus microscope IX71. This system is compatible to Olympus power supply TH4-100. The system has 4 parts: Olympus power supply, Dolan Jenner fiber bundle, fiber-feeder and illuminator & fiber plugin adapter. Fiber plugin adapter can be directly mounted on the illuminator and the whole system can be controlled through Olympus power supply. I designed it such  that it requires least amount of machining with regular tools and components available in any optics lab.

Why fiber-light when Olympus illuminator works fine? Following reasons why fiber-light becomes important:
* DNA experiments are really sensitive to temperature (thermal energy) even few degrees make a big difference.
* Microscope (optical trap) is enclosed inside an enclosure (to avoid airborne noise and currents), so within few hours temperature of the microscope wall rises almost twice due to the halogen lamp used for illumination, this heats up the entire enclosure with the sample.
* Temperature hike may make two similar data sets which are taken some time apart different.
* Fiber light solves the problem of temperature hike by providing clean light and removing heat production through the lamp and conduction through the microscope skin.
* With fiber light temperature inside the enclosure goes from 23.7 to 25.5 total 1.8 degree Celsius hike in comparison to halogen lamp where temperature goes from 23.7 to 49 total 25.3 degree hike over a period of 10 hours (see PIC 4).

There are many good fiber-light feeder available in market by Dolan Jenner . The reason I made my own is the following:

* Olympus power supply is better designed to feed the illuminator and I wanted something which I can control through Olympus hardware. The feeder I designed can be directly controlled through Olympus power supply or microscope.
* I used Dolan Jenner fiber-feeder (fiber-lite model 3100) but it was not good enough for two reasons: For intensity I could only choose 3 settings in comparison to Olympus  where I can choose any intensity, Flickers; fiber-lite probably uses half rectifier because I was seeing flickers in the camera in comparison to Olympus where the intensity was smooth and constant.
* Design and construction: I designed the system such that I would have to do least amount of machining  with all the components available in normal size optics lab just as mine, takes less time to make (it took me around 10 hours to make it work including troubleshooting all the bugs) and costs be around $400 including my time.
* Optical trap is very sensitive to mechanical vibrations; I wanted to have something which does not have fan inside. Fan vibration can travel through the fiber bundle to the microscope and to the sample.  In this design I mount an external fan above the optical table so no physical contact to the fiber-feeder.

Step 1: Design and construction

Design & Construction
For more information please see the pictures and web-album link in the end.

Fiber-light system has four parts (see PIC 2):

# Olympus power supply model TH4-100
# Dolan Jenner optical fiber bundle
# Fiber-light feeder
# Illuminator & fiber plugin adapter

Please see the slides; all the components are labeled with their part number and company. Power supply is from Olympus and fiber bundle is from Dolan Jenner.
Illuminator & fiber plugin adapter
* Illuminator & fiber plugin adapter has 2 parts. Illuminator is from Olympus and it comes with all the microscopes in some form or other based on the design.

Fiber pluging adapter
* 2 X ER2-thorlabs 2 inches cage assembly rod
* 2 X S1TM08-thorlabs lens cell adapter
* 2 X CP02-thorlabs cage plate
* 1 X AD11F-thorlabs adapter
* 1 X SM1L03-thorlabs lens tube
* 1 X (2.5 X .5 inches) aluminium metal plate
* some 4/40 screws.

* Fiber-feeder has 4 parts:Box, Lamp mount, lens assembly and fiber outlet adapter.
* I used 6X3X2.5 inces aluminum box, 4 rubber legs and 2 banana connectors and 2 leads. Any size box can be used with any mind of connectors.

Lamp Mount
* Halogen lamp came out of Olympus illuminator
* PCB plates (ceramic is better for this purpose, but i couldn't find any)
* Aluminium plates (have to be machined to fit the lamp)
* Some 3/8 nuts and bolts

Fiber outlet adapter
* 2 X CP02T-thorlabs cage plate. Use 2 cage plates back to back, do not use wood.
* 2 X SM1T2-Thorlabs coupler
* 2 X SM1A1-Thorlabs adapter

Lens assembly
* 2 X CP02T-thorlabs cage plates
* 2 X ER2-thorlsba 3’’ cage assembly rod
* 1 X LA1951-A thorlabs f25mm lens
* 1 X TR2-thorlabs post
* 1 X RA90-thorlabs post clamp
* 1 X TR075-thorlabs pos
* Some 1/4 and 3/8 screws

Some parts i might have missed to list so go to the slides for more information. I have not included the tools considering no special tools are used besides normally available tools in the lab.

About This Instructable




Bio: I am an optical engineer and love to design and build things out of trash for a good use of research.
More by pranavrathi:How to upgrade the battery-life of your RC vehicle? Fiber light for Olympus microscope Fast shutter foot-switch for lasers 
Add instructable to: