Fix a Non-working Electronic Fly Swatter





Introduction: Fix a Non-working Electronic Fly Swatter

A friend brought me her new electronic fly swatter she bought in another city. It never worked and taking it back would be too difficult. In addition, her swatter was modelled after a tennis racket. It was not the exact unit shown here. She and her husband really enjoy tennis. So, it was important to make the swatter work for her.

Step 1: Open the Case and Examine the Circuit Board

This is the circuit board from the unit shown in the introductory frame. My friend's circuit board was similar, but not identical.

Beginning from the right side and moving to the left, you see the battery leads from the switches and the red "on" LED. One of the resistors limits the current to the LED. The other provides the correct bias current to the transistor (the black object at the lower right corner of the circuit board). Transformers cannot work with direct current. The transistor switches on and off rapidly to create a rising and falling voltage for the transformer to step up. Next comes the transformer. My friend's unit has only one capacitor for storage of the charge while it builds up to the maximum charge of the capacitor. This unit has two capacitors and four diodes. I did not check it out thoroughly, but I believe the diodes and the capacitors make a voltage multiplier. At the far left of the circuit board are four bleeder resistors to dissipate the charge on the capacitors when one is finished using the swatter. The bare wires are the high voltage wires to the grid wires in the yellow swatter frame.

Step 2: What I Found

The photo shows the transistor. When I opened my friend's swatter, the smooth flat front of the transistor was largely blown away and looked like a miniature bomb crater. That was a good clue for identifying the problem.

Sometimes you can check a transistor while it is in the circuit by using the diode check function on your meter. You are looking for current to flow in one direction between two legs, but not in the other. My friend's transistor blocked all current in both directions. That was further confirmation the transistor was defective.

While this one has numbers on the face that can help to identify a replacement, there were none on my friend's transistor. NPN transistors are more common than PNP. I guessed these circuits use a low voltage NPN switching transistor, like a 2N2222. These are very common and available at Radio Shack on a blister pack.

Step 3: Replace the Transistor

I did not wick the old solder away from the holes in the circuit board, but melted the old solder with a small wattage soldering iron from below while pushing the leads into the holes from above.

Always use a heat sink when soldering the leads of semiconductors, like transistors. They can easily be ruined by too much heat.

When I finished soldering the transistor leads, I made sure the solder joints looked good. Then I put the circuit board back into the swatter frame and closed it up. (On the one shown here, the battery leads broke and had to be soldered back in place at the battery holder and one of the switches.) When I put the batteries in and pressed the switches, I rested a screwdriver on one of the grid wires and moved it near to the next grid wire. A large spark leaped from the next grid wire to the tip of screwdriver.

The transistor is the most likely component to fail in a circuit like this. Also check any diodes. I believe my friend's new swatter failed when tested at the factory. A high voltage wire was too close to part of the low voltage circuit. High voltage probably flowed back to the transistor and blew it to pieces.

Update: (September 15, 2009) The fly swatter shown in these pictures became weak in its output and then stopped working altogether. The transistor seemed to test good, but when I replaced it the LED lit again. Still, there was no spark when resting a screwdriver on one grid wire and moving it toward the next grid wire. I checked the capacitors and diodes. All seem to be good. I took ohmmeter readings on the transformer windings. The secondary read 268 ohms, but the secondary windings on an identical working unit showed 423 ohms. I am suspicious the secondary winding of the transformer has a short between its windings. Findings a replacement transformer at a reasonable price is not likely. I will probably buy a replacement fly swatter.



    • Pocket-Sized Contest

      Pocket-Sized Contest
    • Pro Tips Challenge

      Pro Tips Challenge
    • Paper Contest 2018

      Paper Contest 2018

    We have a be nice policy.
    Please be positive and constructive.




    sir if anyone get in touch with secondary side of this circuit, can it cause of high electric shock which can lead to fatality accident???

    actually it is powered by two aa batteries.the current is very small and even the voltage is steped high,the amp will be low and amp is the most danger thing.

    I have accidentally received a shock from the secondary side of this circuit. I did not enjoy it and plan to avoid it in the future. But, it was not enough to be fatal.

    thank you sir for good advice!

    fly swatter is working perfectly but it produces noise sometime even if there is no mosquito

    A snapping, sparking noise? You might operate it in the dark to see if you can determine where it sparks.

    My bat was working condition.but it not get mosquito dead sound and not get dead blink light.

    You could have any one of several problems from weak or dead batteries to a broken wire connection to a defective transformer or a failed transistor. If you have the ability, or a friend who does, methodically check the circuit from beginning to end. Otherwise, these bug killers are not expensive and you may simply need to buy a new one.

    HI Phil, Can i use this mosquito circuit output as input to glow 1w LEDs connected in series/parallel.

    I really do not know. I doubt it.