loading
Picture of Fully Functional Television Oscilloscope
SDC10024.JPG
There are a few Instructables and otherwise internet based instructions on how to modify a television set into an audio visualizer or other simple oscilloscope-like device. This Instructable will show you how to create an actual lab oscilloscope worthy of a poor, amateur electronics enthusiast. The final product has optional audio output, variable input voltage from millivolts to hundreds of volts, as well as manual horizontal frequency locking. The total cost for this project was around $20.

To give proper credit, this Instructable is an improvement on Magnelectrostatic's at http://www.instructables.com/id/How-To-Make-A-CRT-TV-Into-an-Oscilloscope/. I wouldn't have been able to complete my mod without it. Thanks!

UPDATE (12-28-10):
This mod is not capable of displaying much outside the human audible range (20-20k Hz).

Also, since TVs are highly variable in design, this Instructable is intended for people who can do their own experimenting. This of course requires experience in electronics. Your TV will probably be different from mine. My instructions may not apply to what you're working with. They're guidelines. I hope they help you modify your available resources by providing ONE particular example.
 
Remove these adsRemove these ads by Signing Up

Step 1: Safety

Picture of Safety
SDC10032.JPG
SDC10031.JPG
This project involves working in close proximity to the television's exposed flyback transformer and high voltage capacitors, which are both potentially lethal devices if you do not take proper safety precautions.

First, the obvious step: Is it plugged in? Unplug it! Isn't it funny that this is the exact opposite of what a tech normally tells you...

When you remove the shroud, be careful not to rip any wires from the circuit board, and do not touch any of the exposed contacts. Identify large capacitors and take note of their voltage ratings. 50v and above are especially dangerous, and should be discharged with a well insulated screwdriver across the contacts prior to tinkering if possible.

UPDATE (12-28-10):
Ok, ok, I generally dislike disclaimers because they are almost never legally sound. But for those of you who don't get the idea from the above paragraphs...

Don't attempt this unless:
you have a solid grasp of high voltage safety practices.
you have a solid grasp of electronic equipment in general.
you have someone around to call 911 or give you CPR.
you have experience working with mains (120VAC) power.
you are not a moron.

I take no responsibility for damage to your health or equipment. All damages incurred are the sole responsibility of the end user.

Step 2: How and Why it Works

Picture of How and Why it Works
anode.gif
SDC10037.JPG
SDC10036.JPG
SDC10039.JPG
CRT televisions and oscilloscopes are pretty interchangeable devices. Normally we think of oscilloscopes as being complicated because they're lab devices, but really, your TV is much more complex (obviously a TV doesn't compare to a good lab oscilloscope, however). This is a good thing, because all you have to do to get a basic oscilloscope is destroy some of the TV's functionality and add an amplifier.

By the way, this only works with the old CRT TVs...

Each line on the screen of your TV is created by an electron beam being scanned across the phosphor backing of the glass very quickly. This is possible because electrons are charged particles, and can be manipulated by electric and magnetic fields. TVs use coils of wire at the back of the tube to produce the necessary magnetic field to deflect the beam, and these are what we aim to modify.

Scanning frequency is important. We know that video runs around 30 frames per second. Each frame is composed of two "interlaced" images which means the TV actually scans at 60 frames per second. In NTSC zones (America and a few other countries), there are 525 stacked lines per image. So to produce a single frame, the electron beam is deflected the screen's vertical distance every 1/60 of a second (60Hz), and the horizontal distance every 1/(60x525) of a second (31500Hz). That horizontal frequency is awfully fast. So fast in fact that it has to be driven by a 15,000+ volt flyback transformer. For audio, we want the 60Hz provided by the vertical scanning.

When all is said and done, the TV will still think it's a TV. It will attempt to produce an image on the screen, but you will have forced it to draw that image on a very thin line that is vertically deflected by your input signal. For this reason, it is best to use a very old TV that displays white noise, or one that displays a blue screen, but will not automatically turn off the screen.

Oh, one other thing: The deflection coil of the television is an inductor. When a signal passes though an inductor, several things happen. First, the inductor has impedance, which is kind of like resistance. Impedance is frequency dependent, and in this case it means that high frequencies will not make it though the coil as well as low frequencies will, so your oscilloscope will have a hard time displaying really high frequencies. Second, the signal is integrated in the mathematical sense. This means that square wave input will appear as triangle waves on the screen. It will still sound like a square wave on the speaker though. Triangle waves appear (approximately) as sine waves. Sine waves are basically unaffected. Just keep that in mind...

Step 3: Gut the TV

Picture of Gut the TV
SDC10040.JPG
SDC10048.JPG
SDC10046.JPG
The television I used was an old 15" with the classic turn knob UHF/VHF tuner. For the oscilloscope, no tuner or any other extraneous equipment are necessary. Only the main circuit board and anything connected to the picture tube itself are required. So identify anything that takes up space and weight in the case and unplug them one by one, checking each time if the disconnect adversely affects the TVs operation by plugging the TV in and turning it on. Remember, all you need is for the screen to be displaying white noise or some other thing. It just can't be blank.

On my TV, there were two potentiometers in the front. One was a combo power on and volume control, and the other controlled brightness. I removed both of them and installed my own power switch (a big red push button). For the brightness, I set it all the way up while the TV was turned on, then removed the pot and checked the resistances. I then soldered the matching resistors directly into the board where the pot was connected to lock the maximum brightness permanently.

The TV's built in volume control can't be used for this build, unfortunately. It amplifies the signal attached to the television signal, and unless you want to poke around looking for the section of the main board that has the amplifier, remove the volume control. This method should be used for all unneeded adjusters.

Lastly, disconnect the speaker wires at the main board and tuck them away for later.

Step 4: Do I Cut the Blue or the Red?

Picture of Do I Cut the Blue or the Red?
SDC10044.JPG
Identify the magnet coils on the back of the tube and follow the wires to where they connect on the small circuit board on the very back of the picture tube. Unless your TV is pretty new, there will only be two coils, and thus four wire ends. Newer TVs and computer monitors have several coils, but they're all connected together in some way and still only have 4 wires running to them from the main circuit board. If your TV isn't like this, it's likely you won't be able to complete the project, but tinker with it anyway. The four insulated wires are what you're after.

Unless you've taken a physics course and are familiar with the right hand rule F=qVxB, desolder one of the four wires at random. Turn on the TV. If you see a horizontal line, you have disconnected the vertical deflection coil. If you see a vertical line, you have disconnected the horizontal deflection coil. Use a continuity tester to identify the matching ends of coil. Mark or remember their locations.

You do not need the wires connected to the horizontal deflection coil. Remove them at the main circuit board. Remember, they operate around 30,000Hz and 15,000+ volts. They are not needed at all for the oscilloscope. Short them before you touch. Wrap some electrical tape around the stubs at the board and make sure they wont touch anything inside the TV or it will fry.

Now you have a 60Hz vertical line. Unless you like cocking your head to the side, you want a 60Hz horizontal line. So solder the two remaining wires that are currently attached to the vertical coil, onto the horizontal coil.

Now solder two wires onto the vertical deflection coil. This is the oscilloscope input, where you will connect the amplifier circuit.

Step 5: Horizontal Frequency Locking

Picture of Horizontal Frequency Locking
SDC10062.JPG
SDC10042.JPG
SDC10045.JPG
Make sure someone is around to give you CPR. I'm serious. This is the most dangerous part.

Connect a signal source to the vertical deflection coil. You don't need an amplifier for this part, your MP3 player or computer headphone output is enough to test your oscilloscope. Find a way to generate a stable tone so you will have a single frequency on the screen. Remove the main board as much as possible from the case without disconnecting anything. Place everything on a non-conducting surface. Identify any trimpots on the board.

Now turn the TV on. Take an insulated screwdriver and *very carefully* reach into the mess of high voltage wires without touching anything and figure out what each trimpot does. Someone watching the screen for changes for you helps a lot.

One of them is going to adjust scanning frequency and you'll be able to lock onto the displayed tone by turning it. You need to replace it. Desolder it and solder three wires into the holes where it used to be, keeping track of the middle one. Measure the resistance of the trimpot and find a nice hand turnable one with similar resistance at Radio Shack or otherwise. My TV's trimmer measured 60Kohm, but I put a 50Kohm in there since I had one lying around, and it works fine. Attach the new pot to the wires, making sure the middle wire goes in the middle, then make sure it all works. Mount the new pot in the TV's case for easy user access.

The horizontal frequency adjust will not allow you to resolve extremely high frequencies any better, it will only allow you to stop the wave form from scrolling across the screen maniacally.

You may also wish to adjust the ring tabs found around the skinny part of the picture tube now. They are usually black or dark grey, and adjust the position of the image on the screen.

Step 6: Signal Amplification

Picture of Signal Amplification
SDC10052.JPG
Circuit Diagram.bmp
If all you want is a visualizer, you don't need to go further, just connect your iPod to the vertical deflection coil. You could also scrap old powered speakers for an audio amp. If what you want is an oscilloscope, then read on.

Here is the amplifier circuit I designed for this project. I combined several ideas from other sites, but modified it enough to say it's mostly my work. I made heavy use of Paul Falstad's circuit simulator http://falstad.com/circuit/. It is an Op-Amp augmented audio push-pull amplifier.

The first Op-Amp controls the gain of the input signal by the formula R2/R1 where R1 is the resistance selected by the rotary switch and R2 is the 1Mohm pot. It is theoretically capable of amplifying the input by 1 million times (assuming 1ohm minimum on the rotary switch, which is the jumper wire). It is also capable of significant attenuation.

The second Op-Amp ensures that the transistors receive enough voltage during pos-neg trade off to initiate opening their gates. They require around 0.7v to open, so there is a 1.4v gap between when one transistor closes to when the other opens. This produces a lot of distortion, for which the Op-Amp compensates.

When the circuit is complete, calibrate it. You want the power regulator to supply around 30v so the Op-Amps get their required +/-15v, but its output needs to be a few volts below the voltage across the 1000uF cap to take advantage of it's regulatory powers. Adjust trimmer 1 to do this. An alternative to the transformer and power regulator is a wall-wort. You know, those hideous DC adapters for your cell phone, modem, etc that take up way too much room on the power strip. Just find one that outputs 25-30v.

Connect the circuit output to the vertical deflection coil. Play some music through the circuit and over-amplify it with S1 and S2 so the op amps begin to clip the signal. Adjust Trimmer 2 until the tops of the clips just touch the top and bottom of the screen. This will prevent the transistors from being able to fry the deflection coil.

Now connect the output to the TVs built in speaker. Is it too loud? Add a high wattage resistor. Is it too soft? Add a high wattage resistor to the deflection coil and recalibrate. I was pretty sure I would have to do this, but it turned out that my coil and speaker were well matched. A 10ohm 1W resistor should do the job if needed. You may want to put a switch in line with the speaker as well so you can turn off any annoying signals you may want to view.

Parts List:
1ea TL082 High Slew-rate Double Op Amp
1ea TIP-41 NPN (Can also use TIP-31)
1ea TIP-42 PNP (Can also use TIP-32)
1ea LM317 Power Regulator
1ea 5+ Pole Rotary Switch
1ea 1Mohm Potentiometer
2ea 10k Trimmer
4ea 1A Diode
1ea ~30v Transformer
1ea 1000uF 50v Electrolytic Cap
2ea 470uF 16v Electrolytic Cap
1ea 10ohm Resistor
1ea 220ohm
1ea 1kohm
1ea 100kohm
1ea 10Mohm

Step 7: Put it All Together

Picture of Put it All Together
SDC10055.JPG
SDC10053.JPG
In my TV, when I removed the analog tuner, there was a nice big gap in which to install the amp. There were even screw holes that exactly lined up with the prefab PC board I was using. Lucky me. You will probably not be so lucky. Find a place near the power switch to secure the transformer and wire it so the power switch activates it and it runs in **parallel** with the TVs circuitry.  Find a place as far away from the flyback, deflection coil, and new transformer as possible for the circuit itself.

Connect the transformer to the circuit. Connect S1 and S2 appropriately. Run the two input wires through a hole in the TV case. Connect the circuit output to the speaker and deflection coil. And make sure to remove as much wire length as possible in all connections, especially signal in, to reduce stray inductance in your circuit. Find user friendly places to mount S1 and S2.

Close up the back and take it for a test drive!

Step 8: Have Fun!

Picture of Have Fun!
SDC10004 (2).JPG
This oscilloscope is far from being lab worthy, but I've already used it for several other projects where it's nice to be able to see a waveform. The ability to hear the signal is of great novelty, especially when you get the awesome feedback reminiscent of "Signs" or "E.T."

The degree of signal amplification is a great feature as well, if you're not using it for anything really precise. The 60Hz noise that the circuit amplifies can be a little ridiculous. This is caused by the input wire's stray inductance, not by the circuit, and could only be reduced by shielded, grounded wire, of which I have none. I have a spool of wire I connected to the input to play with it's large inductance on high amplification. I can detect power sources from many feet away by aiming the coil in the direction of transformers. I can also detect the processor chirping away inside my laptop. I can even use the coil as an inductive microphone by placing it near a speaker playing music. The speaker's coil produces a magnetic field that the detection coil picks up and amplifies and plays on the oscilloscope! The attenuation the circuit can produce is also impressive. I have in fact connected the input to my 120VAC household line and registered a 60Hz wave and the oscilloscope still lives.
1-40 of 112Next »
JohannaL1 month ago

do you by any chance have a eagle file or pcb lasyout?

Hi hoping someone with some knowledge can help me out. Im using 2 of these in a performance and have one working perfectly in lissajous/xy mode. This tv is a really old black and white one like the one used here. The other is really old as well but is a colour tv. I had an amp connected to the horizontal coil and it was working fine. I then connected the other side of the amp to the vertical as well for x/y and once i switched on the power... bye bye amp. It fried it.
So i have another amp and everything else is working but i havent tried the vertical coil again. I measured the 2 wires coming from the vertical with a multimeter and im getting a reading of almost 60 Ohms. All other coils on both tvs are nowhere near this level of resistance but my electronics knowledge is very small so im not sure what this means. Can someone shed some light and tell me if it's still possible to use this coil with an amp?

Thanks

So wonderful! I'll add a link to our "Music You can See" 'ible. This is incredibly awesome

jgodalla6 months ago

Very nice and clear instructions - thank you. I have modified a TV as per the instructions, and have a nice blue horizontal line now being driven by the vertical output of the main board (horizontal output is disconnected and sealed off for safety). The leads to the vertical deflection coil now terminate at two binding posts on the front of the TV to accept inputs from various devices. However my blue horizontal line occupies just the centre half of the screen leaving about 75mm blank either side. It seems to work OK, because a 9v battery across the binding posts shifts the line to [almost] the top of the screen, and ac inputs appears as sine (-ish) lines, but can anyone tell me what to tweak to spread the line fully across the screen?

laserjocky (author)  jgodalla4 months ago

I had this problem too. If your TV has ring tabs on the back of the tube, the long cylindrical glass part, then rotating those rings might help a little. I think that's what worked for me.

Did you say it's capable of 20 KHz? Or 20 Hz? Or both? I was confused
laserjocky (author)  Engineeringmaster1068 months ago

Both. The signal is hard to see at those extremes, but I could see 20kHz in my version.

Cubytus11 months ago

I tried to build it, but for some reason the sound from the loudspeaker is really weak, and the horizontal line barely moves. Any idea?

laserjocky (author)  Cubytus11 months ago

This circuit should be able to push plenty of current into a speaker. It's possible the coils in your TV are lower impedance than mine and are using more power. Try disconnecting the circuit output from the coils and have it go only to the speaker. Does that make the speaker louder? If so, you'll need a more powerful circuit. If that doesn't help, check your resistor values to make sure you're getting the amplification you want.

Nikola0101 year ago

I have one question, how horizontal beam works? Does controller linearly increases voltage from 0V to i don't know how much or? If so, how much is that voltage and if i make circuit that can make refresh rate more than 60Hz, and control it refresh rate, can i make it work on much higher frequencies? Of course i know how much restriction inductor make, but in theory if we forget about that coils on sec.

laserjocky (author)  Nikola0101 year ago

Someone asked me this a long time ago and I think we finally decided that making the modification you describe is a lot of trouble, probably more than it's worth. You could, in theory, make a controller to sweep the e-beam horizontally much faster than 60Hz. Really that's what the flyback transformer does. You end up needing huge voltages to sweep at rates of thousands of Hz because of the inductance of the coils.

Cubytus1 year ago

Maybe my question is silly, but in lieu of the TL082, would it be possible to use a pair of LM741? Does it make any difference in this application?

laserjocky (author)  Cubytus1 year ago

Sorry for the slow reply. For this application it probably doesn't matter, since the signal quality is going to be heavily distorted by the TV magnetic coils. You can use a 741 here. If you needed higher quality signals then the TL08x series is better than the 741. TL08x has higher slew rate and higher input impedance. In short it's a more ideal op-amp. I used the TL082 because it was at Radio Shack and it contains two op-amps.

double_g1 year ago

I have a perfectly good oscilloscope on the desk behind me, but I still want one of these haha. Pretty neat project!

laserjocky (author)  double_g1 year ago

Thanks! When I made it I had no access to oscilloscopes and this was supposed to be the solution to that. It's not the most accurate thing in the world but it did the job. Now I work in an electronic materials lab and I am surrounded by them. Go figure.

Well I have just successfully made the first part of the build. I used a 2004 Sharp color TV that was laying around. Everything was successful for the most part. I have the same problem many others have with the slightly short horizontal line, but the line does oscillate with the music. My main question is whether or not it is feasible to hook up the speaker in the tv for music playback.

color tv works even if it dosen't have the horizontal scanning pot
OMG, that is awesome! I'm making one!
robot7972 years ago
can anybody tell me how to trick the tv into working
without conection the horizontal deflection coils
i have a tv and it does not funktion without them
and i need an x and y
T_T_ robot7972 years ago
try putting a resistor in place of the coil, probably 5-10 ohms, or you could measure the resistance of the old H-coil, then find a resistance close to that
Sun Gear2 years ago
If you had 2 inputs, one going to the V-coil and the other to the H-coil, would that be able to make a vectorscope?
T_T_ Sun Gear2 years ago
yes, but remember that each coil takes a different amount of voltage to go the same distance
T_T_2 years ago
Is there any way to make a square wave appear as a square?
Is there any circuit that might be able to do that?
jackscrap2 years ago
i have a similar problem, and an extra coil, please explain how yo proceeded, Jerkey.
musick_082 years ago
I want to make one of these for high voltage systems (around 220 vac), if I were to use a portable TV, would I follow these steps, or would there be other changes I would have to make since they operate off of 12 vdc?
jackscrap2 years ago
i am attempting this ion a computer monitor, it has a for cables labeled vhot, vcold, hhot hcold switched them, as you suggested, but all i get is a horizontal bar that moves up and down, also it fries anything connected to it I've pulled tvs apart before so i'm sure they are the right cables, i'm running out of media devices to try, can you offer any help? by the way i searched for quite a while this is the best Oscilloscope tutorial I've been able to find thanks
stealthop2 years ago
i have tried to do this twice now , both times the tv caught fire. it really stinks too. so my tip would be keep a fire extinguisher nearby and do this outside . proceed with caution!! ;)
laserjocky (author)  stealthop2 years ago
Yikes! Someone who knows CPR would be good too. Any ideas as to the why of fry?
I opened up a small tv and connected an audio source to it, but the display only shows a horizontal bar that "fattens" with the music. It does not show waveforms. What did I do wrong?
laserjocky (author)  cardboarddude3 years ago
That's strange. This is after you put the vertical scan wires on the horizontal coil, right? The high frequency horizontal scan is so fast that you wouldn't be able to see the waveforms. That's why they are replaced. If that's not the issue, then it may be that the TV doesn't support this mod.

The audio source physically deflects an electron beam in this mod. If the deflection coils are complex or have other circuitry attached to them, this might not work. I've tried this with computer monitors before and I ended up with a oscillating thick line. I couldn't figure out how to make it work.
Yes, I'm pretty sure I replaced the wires correctly, and now i just have a thick oscillating horizontal bar like you said.

So is there no hope for this tv set!?
laserjocky (author)  cardboarddude3 years ago
Probably not. When was it made? Newer models probably have fancy correction circuitry that messes up the basis for this mod. My TV was an Emerson 1987 black and white model.
jungkurth4 years ago
I made one of these from a Popular Electronics article in the late 70's - and used a color set. Made a simple bandpass filter, and had the low-midrange-highs split out to the three colors, which was amazing. Brought a whole new world to "watching" Pink Floyd Animals...Pigs on the Wing? Dogs? Unreal!
How did you split it into three colors? I have one of these I made from a B&W TV but happen to have a 10" old color TV I had planned on experimenting with.
Sorry for the delay, have been offline for a bit. Easy to do, harder to explain, but tbasically, the three dots in a color set are controlled by three sets of 2 wires - and you have accesss to drive the audio output through them to control the voltage that then moves the h and v dots - into lines - into lissajou patterns.
I would hug you right now for the choice of music! 8D
Brofist!
jhoeffer3 years ago
I had the same problem with it not taking up the whole screen so I switched the h coil and v coil inputs then i rotated the coils so that the line was horizontal again. Worked like a charm and now my line is rainbow colored. :)
zapro3 years ago
Sorry to muck around, but the wires for the Horizontal deflection does NOT carry 15.000 volts.

The Vertical coil is usually driven at about 80-130 volts peak.

You should be aware, that the Horizontal coil is wired in parallel with the flyback transformer, and the high voltage will change when removing the coil from the circuit, raising or lowering the high voltage (usually the latter)

The highest voltage you'll find in a TV set is the EHT Flyback connected to the picture tube via the thick cable in a suction cup looking thingy. On a B/W set you'll have approximatelt 10 Kv (Kilovolt) on this, and on a Color monitor Approx. 25 Kv.

I have done this mod a couple of times, and have replaced the Horizontal coil with an other inductor to keep the circuit working correctly. Around 400 uH of inductance should do it.

I added a Schematic cutout showing the Horizontal coil connected across the Flyback.
Screen Shot 2011-09-20 at 00.12.08.png
laserjocky (author)  zapro3 years ago
Whoops, sorry for the late reply. Thanks for enlightening me on this zapro. I vaguely remember trying to measure the voltages of the coils when I was working on this and my voltmeter didn't particularly like it (the display went all wacky). It may have been the high frequency but my guess at the time was very high voltage.
1-40 of 112Next »