This instructable will show you how to hack / reuse a common Bosch automotive ultrasonic sensor(s). The sensor in this instructable is a very common sensor that can be found in junkyards all over the world. The hope is that this information will allow folks to reuse these sensors in wonderful new applications.
There are many advantages to using automotive ultrasonic sensors.
- Easily detect objects within a two meter range.
- Detect multiple objects within the sensor's field of view. This particular sensor returns all echoes after a ping event. In contrast, many hobbyist sensors only return the distance to the first detected object.
- All Digital. No analog signals are used between the control module and sensors. In other words, the sensors are all digital. Note, the first generation automotive sensors were analog and had many problems. Many aftermarket systems are still analog!
- Water proof. Both the sensor and the connector are completely water proof. Remember, these sensors live inside a vehicle fascia. The inside surface of a fascia is a very tough environment!
- Short circuit proof. The IO pins can be shorted to battery, or ground, or in any combination without harm to the sensor. This includes reverse battery and double (24 Volts) battery connections. Believe it, or not, but modern vehicles are still designed to allow good old back country boys to connect two batteries in series so that their trucks can start really fast! Legacy automotive requirement, I'm guessing.
- EMI (electromagnetic interference) resistant. The sensor has been through a lot of testing to prove it's capable of both being resistant to EMI interference and resistant to generating EMI noise. The EMI tests take weeks - being able to pass automotive EMI requirements is a really big deal!
- Hardened. The face of the sensor is electro primed and painted solid aluminum. The rest of the sensor is plastic with the electronics rubber potted.
- Shock proof. Again, the sensor design had to prove it's self in a whole battery of tests. Again, remember that fascia mounting location - bumpy place to live.
- Zap Proof. Each of the sensor pin is tested during EMC (electromagnetic compatibility) testing to verify it can survive a high voltage discharge. I think the test requires surviving a 15kV zap on each pin! Nothing worst than watching this test being performed on your product at the EMC lab. I'm convinced, watching this took years off my lifespan!
- Temperature proof. Tested from -40 degrees C to +85 C. There is also thermal shock tests that must be passed. Living in a fascia is not easy.
- Expandable. Multiple sensors can easily be used to cover any portion of 360 degrees. As an example, it would be easy to use eight sensors on a robot where the sensors were placed at 45 degree increments around a circle. The robot could then have a complete 360 degree view with no moving parts!
- Fast. One ping out two meters and back takes just under 50ms (milliseconds). The 50ms I quote actually includes two pings (to double verify) and guard-band time. See below for more on this.
- Smart. A sensor can be commanded to generate a ping or, instead, to simply listen. Using a pinging sensor and one, or more, listening sensors tricks can be done to detect additional (very close) objects. More on this below too.
- Elliptical Pattern. The ultrasonic pattern generated is purposely not circular as you might expect. Otherwise, the sensor would get echoes off the ground. Turns out, the lip of a pot hole reflects a lot of ultrasonic energy.
- Low Power. A sensor only draws about 20 to 25mA. About the same amount of energy used to light a standard LED.
These sensors can be found in junkyards all over the world. The sensor used in this instructable come from Bosch and are widely used in GM and Chrysler vehicles. I believe, but don't know for sure, that the sensor are also used in many European vehicles too. After all, this is Bosch (a German company) we're talking about.
A disclaimer is in order. I worked for a small supplier who also produced ultrasonic sensors for GM. However, that was three years ago. I never had, nor ever learned of, any direct knowledge of how a Bosch ultrasonic sensor / system is designed or how it is used or operated. The GM engineers were very careful not to divulge anything (other than warranty info) concerning competing suppliers.
All information in this instructable came by way of reverse engineering my wife's 2008 GM Tahoe which had a reverse backup system factory installed. For sure, these sensor operates completely different than the system I was involved with. Although I really like these sensors, I have no love loss for Bosch as a company. They put it to us every chance they got.
It just kills me that these sensors are going unused by the hacker community. After all, over 100 million Bosch ultrasonic sensors have been produced since being introduced in 1993. This factoid can directly off their web site. Let me say it again because it is astounding, there have been 100,000,000 ultrasonic sensors produced by Bosch since 1993. However, Valeo's web site claims they are the world's largest ultrasonic automotive supplier. So, Valeo (who introduced the sensor in 1991) has produced even more! Wow, so there are a lot of sensors out there. Note, Valeo (a French company) supplies ultrasonic sensors to Ford, as well as to European manufactures.
OK, head out to your local junkyard and look for any GM or Chrysler vehicle that was manufactured since 2006. This particular sensor design might even go back even farther - I just don't know. Still, there are plenty of 2006 through 2011 GM and Chrysler vehicles around to plunder. Go get 'em boys and girls. Oh, don't forget to snag the wire harness in the fascia too. Those water proof sensor connectors are very precious. You'll need those connectors later on.
When looking for sensors make sure they match the first picture below. Bosch laser etches their name right into the sensor plastic housing. Never mind GM does not allow suppliers to mark their name on their own product. Bosch seems to get away with ignoring this GM rule. Look for the Bosch name and logo, and also that the sensor shape matches the picture in this instructable. With a matching logo and shape you have the right sensor. You should not have any problem finding these sensors. My local junkyard quoted me $30 bucks for a set of four sensors (harness included).
There is also a bunch more information on my web site which shows "procuring" sensors from my wife's Tahoe. I've also got a bunch of info on my site about reverse engineering the ultrasonic park assist (UPA) module. The info is mostly about getting the UPA module tricked into operating on my bench once removed from the vehicle. Below is a link to the site.
http://ph-elec.com/content/hacking-gm-ultrasonic-park-assist-sensors















