101,794

116

25

Published

Publishing this one in a hurry, in case it is useful to our friends in Japan.  This is a simple Geiger counter circuit.  It does require some specialized parts, in particular a Geiger tube and some high voltage Zener diodes, but the rest of the components are readily available.  If you're feeling like experimenting, try making your own Geiger tube... see the last step of this instructable for some comments on that.

This is the second electronic circuit I ever made, so it's pretty basic, suitable for beginners.

Step 1: The Circuit

Click on the "i" in the top left of the picture and select the full image resolution to see the schematic diagram more clearly.  I am assuming you have some electronics experience so you know how to solder and which way to connect a diode etc., but if not or if you have any questions please ask.

I didn't have components to make a high voltage power supply, so I improvised using a transformer from a 10V AC adapter (the little black box you plug into the wall to convert 120VAC to 10VDC).  It is not that important to use a 10V transformer, I'm sure anything in the 3V to 12V range would work.  Just break open the plastic box and remove the transformer.  I used a 1.5V battery (C cell) and a pushbutton switch on the 10V side of the transformer, and the high voltage is generated on the 120V side.  You will have to experiment with which polarity to connect the 120V wires of the transformer so as to generate the correct polarity of high voltage, with the wrong polarity the voltage generated will be much smaller.

Tech note:  How the high voltage circuit works
The output voltage of a transformer is proportional to the rate of change of the input current.  When you press the pushbutton switch, a fairly large current builds up in the low voltage side of the transformer.  When you release the switch, this current instantly drops to zero, and since the rate of change of current is very high (dropping from a large current to zero in a very short time), a high voltage spike is generated on the high voltage side of the transformer.  High voltage generating circuits work in much the same way, but they use transistors to switch on and off the current in the low voltage side of the transformer.  Since the high voltage is generated only when the button is released, you want to press the button for only a short time so you don't waste the battery current.

The generated high voltage is stored on capacitors and is regulated to 500V using three high voltage Zener diodes in series (200V, 200V, and 100V, adding up to 500V).  Such high voltage Zener diodes are not common, you will have to get them at a specialty electronics distributor.  Of course whatever reasonably high voltages you can find (for example 1N5271 through 1N5279 are rated 100V through 180V), just add enough in series to equal the voltage rating of the Geiger tube.  Make sure to use capacitors rated at least 1000V, and put enough in parallel to add to about 0.02 microfarads.  Note that you can't put lower-voltage capacitors in series to get a higher voltage rating, this doesn't work.  The Geiger tube I had required 450-500V, other tubes require different voltages, 900V is common, if so use more Zener diodes accordingly.

The diode labeled "1000V PIV" is a rectifier diode with 1000V peak inverse voltage (or peak reverse voltage), to rectify the high voltage (for example 1N4007).  I actually used two of these in series because with just one the leakage current was too high, and the high voltage decayed too quickly.  If you have lower voltage diodes such as 1N4004 you can put several of them in series.  I opened a compact fluorescent light bulb once and it contained several 400V PIV diodes, 3 to 5 of those in series would work.  The two unlabeled diodes are 1N914 type.

The signal from the Geiger tube is strong enough to trigger a 555 timer.  The 555 timer then drives a small speaker directly, making a 'click' noise each time the Geiger tube detects radiation.  Use an IC socket for the 555 timer chip, so you don't fry the chip when trying to solder it into the circuit, also it makes it easier to replace if you make a wrong connection and fry the chip.

Here is a similar design which you can also refer to for other ideas and information:
http://www.galacticelectronics.com/GeigerCounter.HTML

Step 2: Construction

The pictures show the inside of the Geiger counter.  Unfortunately the Image Notes are not working now for some reason, but I think it is clear what is what.  The Geiger tube is just glued to the inside of the case with silicone adhesive.  Three holes were drilled in the case to allow radiation to reach the tube.  If there is a possibility of contamination of the Geiger counter (such as in a radiation fallout situation), I would suggest not to put any holes in the case, the radiation will penetrate a plastic or light aluminum case anyway, then the outside of the counter can be cleaned if contamination is suspected.

The speaker was glued to the top of the case, with 3 holes drilled in the case for the sound to escape.  A cabinet handle was attached to the case for easy carrying.

To operate the Geiger counter, turn on the switch (connects power from the 9V battery) and press the pushbutton quickly about 10 times to build up the high voltage.  The high voltage will last about 2 minutes, then you will have to press the pushbutton a few times again.  With the small tube I used, about 5 counts per minute are detected with normal background radiation.  If you use a larger, more sensitive tube, you will get more counts.

These are very brief instructions, any questions please ask.  Unfortunately I can't help with where to find a Geiger tube, and there seems to be a worldwide shortage right now.  You can find them on ebay, but see the comments below, some types are not very sensitive so you might be disappointed.  This link is interesting, it describes making a Geiger tube from a 35mm film container:
http://einstlab.web.fc2.com/geigerE/GeigerE.pdf
However, the air-filled tube requires >3000V.
From what I have been able to learn for example here , and in the einstlab link above, the special quenching gas in Geiger tubes serves only to reduce the 'dead time' between clicks, and allow faster count rates.  When filled with air, a Geiger tube should still work but with count rates only up to about 300 counts/second instead of 10,000 counts/second.  But hey, 300 counts/second is quite a lot and plenty good enough for do-it-yourselfers who are not likely to come across any radioactive sources strong enough to exceed that.  So go for it, just take a metal tube and suspend a wire in the middle and it should work.  I'd use something much smaller diameter than a 35 mm film case though, to avoid very high voltages like 3000V.  An aluminum tube about the size of a drinking straw should be just about perfect (aluminum so the radiation gets through easily).  With my simple high voltage generator, it sounds like something MacGyver could do in his kitchen!  If only I had time to try it out... new baby in the house... need sleeeep...

Recommendations

573 Enrolled

• Oil Contest

We have a be nice policy.

Questions

Hi, a source for the hard-to-locate HV winding is old personal alarms.
This one cost me £1.57 from G4S and also has a nice case and speaker with enough room to put the modified PCB in.
It also has a little socket which can if you want be replaced with the 4 pin one harvested from a broken MP3 player and make a USB charger/sync cable.

Another worthwhile method of "fixing" stubborn oscillating or marginal tubes which I discovered is to connect two 10M resistors in series with a 0.1uF capacitor and this quenches the tube nicely without affecting sensitivity much if at all.
Rescued an expensive tube this way and many counters will benefit from the improved EMI resistance so they don't go crazy next to phones etc.

I have wondered whether the electronics of a racket bug zapper could provide the voltage needed to power an air-filled Geiger tube.Apparently the better ones provide something over 2kv. which should be able to drive a 20 mm tube maybe?Those electronics are tiny and powered by 2 C or D cells.

For the high volts pwr sppy.. what about anused one-use pic cámera, the high tension to charge the capacitor offers about 500 volt and is so little, have a look to this instructable about:
" Build a Pocket Ionizing Radiation Detector (PIRD)" if you like to and how to make some kind of a ¿geiger counter no-tube"?.. and how to use the used cam circuit for the high voltage supply.

Nice instructable, thanks from Spain.
Fyborg

Using a camera flash circuit to generate the high voltage is a good idea.

http://electronicdesign.com/article/test-and-measurement/simple-geiger-detector-uses-neon-glow-lamp1634

Cool! I was wondering if a neon lamp would work. I expect that the count rate would be low, but it's certainly an easy way to go.

Could I have a better view of the wiring diagram? I can't see it very well. Thank you.

Did you click the "i" in the top left corner of the picture and select the full image resolution? Then you can see it more clearly.

Would this geiger be sufficient for driving https://www.instructables.com/id/Arduino-True-Random-Number-Generator/step5/Detect-Radiation/
?

Yes it would work, but it would be annoying to have to keep pressing the button to refresh the high voltage. If I was going to do something like that I would make a better high voltage source that does not require a manual pushbutton. Check out some of the references in my instructable.

Thats a great geiger counter. I made one 20 years ago and got it out to monitor , if any radioactive particles from the blown reactors in Japan. I just got done writing an instructable on how to Ustream the data. Your counter would be perfect if you can add a optocoupler at the output for making pulses. Are you near the West Coast close enough to catch any fallout?

2 replies

Thanks for the comment! My circuit is not very well suited for a continuous monitoring application like your project (great project by the way!), because with my simple high voltage generator you have to manually push a button to generate the high voltage. It would be possible to connect a slow 555 oscillator circuit (1Hz?) to a relay to generate the high voltage automatically, or to use a high voltage generator circuit such as in the galacticelectronics link above.
It would be quite easy to connect an optocoupler to my circuit, just connect it to the speaker output through a ~1 kohm resistor.
I am on the east coast so I don't expect to pick up anything from Japan. I think even after Chernobyl it took very specialized equipment capable of detecting the gamma ray energies to pick up fallout in North America and distinguish it from normal background radiation, so I don't expect a Geiger counter would be able to do it. But definitely fun to try!

Do you often make Geiger counters?.... How efficient is this based with say an off the shelf counter?

I would suggest that when/if you get more time, to flesh this I'ble out abit as it's not fantastically clear... But well done anyway I enjoyed giving it a read

High Five for you

3 replies

Thanks for the comment. Yes, when I get some time I'll add more details. If you have some suggestions on what's especially needed that would help.
This is the only Geiger counter I have made, I did it as a project for an electronics course years ago. With 5 counts/minute for background radiation it is not as efficient as most Geiger counters which will give 15-30 counts, but that's because of the small tube I used, not the circuit.
What' I'd really like to do is figure a way to make a Geiger tube, that's the big disadvantage of this project, Geiger tubes are hard to come by. They are normally filled with special gases, but I think they can work when just filled with air..

Here is a posting that describes how to make a Geiger tube using a 35 mm film container!  The disadvantage is that an air-filled tube requires >3000V.

Apparently radioactive particles will ionize the gas to 500v and trip the counter. Found that on, http://www.blackcatsystems.com/science/radiation.html

http://www.techlib.com/science/ion.html#Experimenters%20Chamber

soo yeah....... did a great job there.....BUT..... it is still too difficult to make (for me, i don't have the parts i mean), and not anyone can make it. i'm trying to make one myself using up to 4/5 parts (yeah sounds unbelievable) i have a tube (that you can find everywhere, and does not have a voltage rating up to 400/500 V its really low,

http://www.goldmine-elec-products.com/prodinfo.asp?number=G17365

Reasonable price, too.