First I brought you my tutorial on making elaborate vertical LEGO mosaic portraits. Then I dazzled the likes of you all with my popular mosaic LEGO lamps. What happens when you combine the two? Why, you get a vertical mosaic portrait with illuminated components: a vertical mosaic portrait to display up against the wall, but with an internal grid of LED strips for light output, rather than light bulky bulbs!

This particular method of illuminated mosaic LEGO portraits is actually a refined experimental concept I've been tinkering with, by having a mosaic portrait with hollow innards and LED strips to provide the light output as opposed to low-wattage bulbs. The first experiment with an illuminated LEGO portrait was in October 2013 when I built two different revisions of a light-up portrait of my late cat Tiggs (Tiggs Portrait Mk.1 / Tiggs Portrait Mk. 2). As you can see in the photos, the eyes of the portrait use the original stained glass method as seen in my original Super Mario Bros. Coin Block Lamp, whereas shortly afterwards, I came up with the method of using "Lite Brite" style dots to make more vibrant color outputs, as seen in my popular Mosaic LEGO Lamps from December 2013. Using the same essential layout of building the Tiggs lamp, along with the dot matrix Technic brick and transparent plate rigging like the Mario block, I successfully came up with a method of having beautiful portraits with rich colors -- as in, the specific Legend of Zelda portrait shown here. The Tiggs lamp was actually made when I was still honing my skills with electronics and LEDs, hence the lighting supply uses a jury-rigged method of connecting two small E12 Candelabra bulbs in a parallel connection with a 120VAC cord. The Tiggs Mk.1 portrait uses two incandescent bulbs, which has the obvious dull yellow/orange glow, whilst the Mk.2 portrait uses two bright white LED bulbs of the same size for more accurate green and yellow eyes. Also, the Tiggs portrait was photographed with my old camera before I began using a DSLR, which means the photos of the eyes lit up are grainy and distorted, as there is no altering of the aperture or shutter speed. After I built this model last fall, I decided to experiment with dot matrix Technic brick and transparent plate grids for the "Lite Brite" design -- which is what you see here in the Link & Triforce portrait!

The initial idea was to have the portrait thicker and to have a parallel circuit of tiny E12 LED bulbs behind certain areas of the portrait, then I opted to use a grid of LEDs connected in an array behind the dots to make the portrait as thin as possible -- unfortunately, there are well over 500 dots, which would make soldering this sucker a chore and a half -- thus I ultimately and successfully came up with the idea of using flat SMD (surface mount diode) LEDs from a lighting strip reel! Controlling the lights is a small Radio Shack switch wired to a female DC adapter input, which connects to the array of LED strips. The whole project is then powered by a 12V/5 Amp AC adapter which plugs into the wall. The actual LEGO construction of the design (sans base) was completed over the course of a weekend. The base, however, was an evolutionary design that underwent several revisions around my numerous changes to the sizes.

Like my other LEGO tutorials, I won't give the specific explanation how to copy my design -- rather, I'll explain the fundamentals of this design scheme, the electrical components, the methodology behind the construction, and resources where to get parts, so that you can build your own similar creations using this overall suggestion. Also like my other creations, this isn't a cheap project to build (assuming you're tackling an elaborate design), nor is it something easily done by the novice builder with poor engineering skills. If you have the talent, patience, dedication, and ample funds, these illuminated portraits can be a fun and elegant creative piece to have around your house.

Step 1: The LEGO Portion

  1. Read First: my Instructables tutorial on vertical mosaic portraits -- this covers how to build a sturdy base, determine a proper size, obtain parts, and design your pattern. More or less, the particular project you'll be building shall use the same principles of the vertical mosaic portraits, in terms of preparing pixel images and assembling structures. Although, this precise model in this current tutorial uses a special base with a door and slots for keeping electronics in place, in the original mosaic portrait tutorial I elaborate more on structural integrity.
  2. Then read my tutorial on mosaic LEGO lamps to better familiarize yourself with the dot matrix "Lite Brite" design for color output. Ignore the parts about light bulb types in that particular tutorial, as the specific project you're about to build now uses a totally different system for lighting. This system uses flat LED strip lights with adhesive backing, which means you won't have to cram any light bulbs into your project.
Now that's you've studied both of my Instructables (presumably), you should be familiar with the dos and don'ts of choosing an image to design, as well as how to obtain parts en masse via the internet (Bricklink.com) or official LEGO Stores. In this particular example, I've chosen more video game themed designs, as sprites are optimal for LEGO mosaics: they're already broken up into grids for easy measurement, they feature simple colors, and most importantly, geeky projects trump all! I mean, you're free to make a portrait of anything you want, assuming you possess the engineering power and the amount of parts -- but as a retro video game nerd myself, I tend to focus on sprites (except my obvious cat portrait).

Using LEGO Digital Designer (a free download from the LEGO website), here's a basic, crude base with the infrastructure for having a hinged door, a hole for an AC adapter, and a hole for inserting a switch. The size of the base is entirely up to you, and the design/color of the base is also per your own choice; I stick to using standard solid black bases, as I have an excess of black slope pieces. My particular Link & Triforce portrait lamp is 34 studs wide, and 45 studs tall -- LEGO studs = computer pixels. The sample base in this section is 22 studs (pixels) wide, with 18 studs (pixels) of the visible area; two left studs are reserved for the hinges, and two right studs are clearance for the electrical stuff. Again, your design can be as wide as you'd like, but remember, more width means more pressure on the rear door. My Link portrait is twice as wide as this sample base, and there are no real issues with the rear door unless it's opened all the way, in which case the portrait sort of goes unbalanced and wobbles, so I had to use a makeshift LEGO jack (like a wheel jack) to hold the door balanced as I soldered the wires. The LDD 3D file I made is included within this page.

With making a hinged door, also keep in mind that the edge of the door must have clearance when closing. See the 3D diagram and the photos: the edge of the door's far side must "slap" against a flat surface, and cannot have a dado joint. You can use Technic bricks and modified bricks to shut the door, which is also pictured in the diagram. For masonry, the front of the design is entirely up to you, but try to make strong brick patterns to ensure sturdiness, and always make sure to have bricks overlapping cracks, both on the front or on the rear/sides for support. Be advised that the thickness of your portrait is 4 studs, so that you have enough space to have the electrical portion attached to the rear door without it jamming up against the front design. Fortunately the LED strips are rather compact and flat, so this isn't an issue.
Why is this considered mosaic?
<p>Might have something to do with its design using a mosaic pattern, matey.</p>

About This Instructable


154 favorites


Bio: Baron von Brunk: original creator of the LEGO/Transformers/Game Boy mashup - featured in Nintendo Power, CNN Geekout, Tokyopop, Discovery Channel Canada, Kotaku, Gizmodo, and ... More »
More by Baron von Brunk: Electronic LEGO Super Mario Bros. Mushrooms Electronic LEGO Super Mario Starman Electronic LEGO DL-44 Blaster (Light & Sound)
Add instructable to: