Step 7: Wiring up multiple LEDs in series

Now that I knew how to wire one LED with various combinations of LED voltages and power supplies, it was time to explore how to light up multiple LEDs. When it comes to wiring more than one LED to a power supply there are two options. The first option is to wire them in series and the second is to wire them in parallel.

To see an in depth explanation about the difference between series and parallel check out this page. I'm going to cover wiring LEDs in series first.

LEDs wired in series are connected end to end (the negative electrode of the first LED connects to the positive electrode of the second LED and the negative electrode of the second LED connects to the positive electrode of the third LED and so on and so on...). The main advantage of wiring things in series is that it distributes the total voltage of the power source between all of the LEDs. What that means is that if I had a 12V car battery, I could power 4, 3V LEDs (attaching a resistor to each of them). Hypothetically this could also work to power 12, 1V LEDs; 6, 2V LEDs; or even 1 12V LED if such a thing existed.

Ok, let's try wiring 2, 2.6V LEDs in series to the 9V power supply and run through the math.

R = (9V - 5.2V) / .02A
R = 190 Ohms
Next higher resistance value - 200 Ohms

Now the variety package of resistors didn't come with a 190 or 200 Ohm resistor, but it did come with other resistors which I could use to make a 200 Ohm resistor. Just like LEDs, resistors can be wired together in either series or parallel (see next step for an explanation on wiring things together in parallel).

When same value resistors are wired together in series you add their resistance. When same value resistors are wired together in parallel you divide the value of the resistor by the number of resistors wired together.

So, in the most simplified sense, two 100 Ohm resistors wired together in series will equal 1 200 Ohm resistor (100 + 100 = 200). Two 100 Ohm resistors wired together in parallel will equal one 50 Ohm resistor (100 / 2 = 50).

Unfortunately, I learned this key point after I wired my resistors together for the experiment. I had originally wanted to wire two 100 Ohm resistors together to equal the 200 Ohms of resistance I needed to protect my LEDs. Instead of wiring them in series, as it should have been, I wired my resistors in parallel (did I mention I am beginner with resistors?) So my resistors were only providing 50 Ohms of resistance - which apparently worked out OK on my LEDs in the short duration of the experiment. Having too much power getting to the LEDs would probably burn them out in the long term. (Thanks beanwaur and shark500 for pointing this out.)

I took my resistors and placed them in front of the positive lead of the first LED that was wired in series and hooked them up to the battery and once again, there was LED light!

With three different combinations of LEDs and battery power supplies and no puffs of plastic smoke yet things were looking good - aside from my little confusion between wiring resistors in series and in parallel.

About This Instructable


3,407 favorites


Bio: I've worked for Instructables off and on since 2006 building and documenting just about everything I enjoy doing. I am now the Creative Programs ... More »
More by noahw: Cómo soldar How to Kiss 意式烤面包食谱
Add instructable to: