Step 8: The Process: Prototype testing

Now we test to see if it works! With the two batteries inside, I measure the voltage on the USB connector: about 5V, which is good. I send off this version to a friend with once of each kind of iPod, including the newest 4G video iPod, for real-world testing: Both to verify the iPod will charge and also how long it will run with the additional pack.

Its also time to verify the math for efficiency: how good is it, after all?

So, in theory, we should be able to calculate the efficiency of the boost converter from datasheet info. We're basically boosting 2.5-3VDC -> 5VDC at around 50mA-100mA. Looking at the MAX756 datasheet, note the efficiency graph.

So we should be getting around 85% efficiency, perhaps a little more. I think the only thing that can really change this number a bit is the inductor. (Below, I verify I'm getting 82% efficiency)

If we're getting 82% efficiency conversion from 2 x 3000mAh Duracells, that means we get (2 * 1.5V) * 3000mAh * .83 = 7.38 Watt hours. Compare that to a single 9V as we calculated before: (1 x 9V) * 500mAh * .65 = 2.93 Wh. So we're going to get about 2.5x more power out of these two AAs than a single 9V.
With rechargeable batteries, we get (2 * 1.25) * 2200mAh * 81% = 4.45 Wh (about 50% more than an alkaline 9V and 3x more than a rechargeable 9V)

Next, lets verify the efficiency using test equipment, and try out the different inductors to see if they make a difference. Instead of using batteries, I'll provide 3V from a bench supply that will also tell me how much current is being drawn. And instead of an iPod I'll fake the load with a resistor. Since the standard USB current draw is 100mA from 5V, that means I need a 5V/.1A = 50 ohm load. I can't just use a tiny resistor because 5V * .1A = 1/2W and most resistors are 1/4W. So instead I take two large 100ohm 'power' resistors, and twist them together. I also check the resistance to verify that together they are 50ohms. I also find a 20ohm power resistor. This will allow me to not only test a 100mA load but also a 250mA load.

I perform 4 tests with 2 inductors: 100mA load for both 2.5V in and 3V in (rechargeable and disposable batteries) and 250 load for both.

My results are summarized in a table attached as the second image

It looks like inductor #2 is little more efficient, probably due to the fact it has a lower DC resistance (30 milliohms instead of 70mohm of the other inductor). It's also a bit cheaper so I'll go with that inductor.

Regardless, it looks like the efficiency is around 82% which is about what I expected.

Another thing to note is that I don't put an on/off switch in like you'd need with a 9V+7805 regulator. That's because the quiescent current of the MAX756 is very low, on the order of 100uA (0.1mA). I measured this myself and got about 75uA.

That means that the self-discharge rate is ~2000mAh / 0.1mA = 20,000 hours, more than 2 years. Most batteries don't last that long! Therefore we don't need a switch, when nothing is plugged in, almost no power is being used.

(in the end, i found another radial inductor that was cheaper and as efficient, which is what I use in the kit)

About This Instructable


2,004 favorites


Bio: i r0x th' x0x & s0x [http://www.ladyada.net more stuff here]
More by ladyada: MintyBoost! - Small battery-powered USB charger ReflectoSafety! SpokePOV: LED Bike Wheel Images
Add instructable to: