Introduction: My Space Balloon: Project Stratohab Success!! High School Student's Budget

"We're making space more American. We're making space more democratic. We're making space more available, approachable and real to the average American."  - James Muncy, President of Polispace

As an avid maker and hobbyist, I support the open source initiative like the Arduino micro controller platform. When I decided to start this project 6 months ago, I dreamed of reaching space on a high school student's budget. Along the way, I also dreamed of publishing my research and development on near space, so we can make space more democratic and available to the everyday DIY-er.

Through my research, I never found a COMPLETE guide that would get me into space. Hence why the project took 6 months. This guide will be a FULL guide so you don't have to spend the same 6 months trying to figure out which systems work the best. For a reasonable budget, this inscrutable will get you into space. 

On August 19, 2012, we launch a near space balloon on a high school student's budget from Brookfield, CT, equipped with tracking equipment and a Canon camera programmed to take pictures every 15 seconds. We captured the entire journey on film.

All the photos:


Vote for this instructable in the hurricane laser contest!

Step 1: Safety - Calling the FAA

Picture of Safety - Calling the FAA

The ordinary person cannot just launch things into space whenever they please. You MUST abide by the rules that govern your state or country. On that note, I  AM NOT RESPONSIBLE FOR ANYTHING THAT GOES WRONG IN YOU ENDEAVORS.

In order to get approval, you must talk things over with the FAA if you're in the united states since they govern the skies. I called the U.S. NOTAM office. 1-877-487-6867. Be prepared to play some phone tag. Be diligent. You can't launch without this clearance.

They'll ask you a bunch of questions about launch time, location, and payload weight. A full list can be found in the FAA guide.

(a) Prelaunch notice: Except as provided in paragraph (b) of this section, no person may operate an unmanned free balloon unless, within 6 to 24 hours before beginning the operation, he gives the following information to the FAA ATC facility that is nearest to the place of intended operation:

(1) The balloon identification.

(2) The estimated date and time of launching, amended as necessary to remain within plus or minus 30 minutes.

(3) The location of the launching site.

(4) The cruising altitude.

(5) The forecast trajectory and estimated time to cruising altitude or 60,000 feet standard pressure altitude, whichever is lower.

(6) The length and diameter of the balloon, length of the suspension device, weight of the payload, and length of the trailing antenna.

(7) The duration of flight.

(8) The forecast time and location of impact with the surface of the earth.

(b) For solar or cosmic disturbance investigations involving a critical time element, the information in paragraph (a) of this section shall be given within 30 minutes to 24 hours before beginning the operation.

(c) Cancellation notice: If the operation is canceled, the person who intended to conduct the operation shall immediately notify the nearest FAA ATC facility.

(d) Launch notice: Each person operating an unmanned free balloon shall notify the nearest FAA or military ATC facility of the launch time immediately after the balloon is launched.

§ 101.39   Balloon position reports.

(a) Each person operating an unmanned free balloon shall:

(1) Unless ATC requires otherwise, monitor the course of the balloon and record its position at least every two hours; and

(2) Forward any balloon position reports requested by ATC.

(b) One hour before beginning descent, each person operating an unmanned free balloon shall forward to the nearest FAA ATC facility the following information regarding the balloon:

(1) The current geographical position.

(2) The altitude.

(3) The forecast time of penetration of 60,000 feet standard pressure altitude (if applicable).

(4) The forecast trajectory for the balance of the flight.

(5) The forecast time and location of impact with the surface of the earth.

(c) If a balloon position report is not recorded for any two-hour period of flight, the person operating an unmanned free balloon shall immediately notify the nearest FAA ATC facility. The notice shall include the last recorded position and any revision of the forecast trajectory. The nearest FAA ATC facility shall be notified immediately when tracking of the balloon is re-established.

(d) Each person operating an unmanned free balloon shall notify the nearest FAA ATC facility when the operation is ended.

Step 2: Apparatus Overview

Picture of Apparatus Overview

In order to get into space, you need a few key things. The first and most important is the balloon. This is a high quality scientific weather balloon that can reach altitudes of 100,000 feet. Tied to the balloon in order is the balloon itself, parachute, radar reflector, and payload. I'll explain the importance of these objects a little bit later. After the balloon pops at its maximum altitude, the parachute will save the payload from demise. You'll want a parachute that can slow things down to about 7m/s. Below the parachute is a radar reflector. It does exactly what it sounds like. You can make this yourself. I can describe this further in the next few steps. The last and most important piece to the puzzle is the payload. This is usually a styrofoam box that carries all of your important electronics including a camera and gps.

Step 3: Flight Predictions

Picture of Flight Predictions

I used a few websites to predict the flight path of the balloon. You can use the website below [1] which will give you a KML google earth file. This takes into the consideration the wind and atmospheric conditions. Try to launch away from any oceans. Since I live in Connecticut, I traveled west  for launch.

Also, If your payload lands in the water, be sure to keep everything water tight, and buy electronics that are "waterproof."

If your doing this in any country other than the U.S. make sure you ask permission from a government agency.


Step 4: Balloon

Picture of Balloon

I love balloons. But these ballons are not party balloons. They are serious stuff. Weather balloons reach altitudes of 100,000 ft and they are perfect for this project. If I were to do this 10 years ago, weather balloons wouldn't be as available as they are today. Costs for near space ballooning, especially GPS, have come down in recent years.

I searched a while on the internet to find a really good weather balloon. Since it is pretty easy for me to buy things off, I opted for the "more expensive" yet "more reliable" weather balloon from this trusted source. [1]

In comparison to other weather ballons. This one is quite small, but it will suit our needs. Here's some specs on the balloon:

Diameter at release = 6 ft. Diameter at burst altitude = 20 ft. Volume at release = 50-100 cuft. Nominal Lift = 3.8 lbs. Maximum Lift = 12 lbs. Neck diameter = 2.8 inches. Neck length = 9 inches. Ascent rate = 1000 ft/min. Burst altitude = 100,000 ft. Material = Natural latex

If you're short on cash, these ballons go for as low as $45 from other places.


Step 5: Parachute

Picture of Parachute

Once again, I like Our friends over at Project Aether have designed a parachute that is just right for our needs. [1]

After many experimental trials with high altitude weather balloon payloads, we have arrived at this optimized parachute design. It allows for a stable parachute deployment at ~Mach 1 when the balloon initially bursts in the vacuum of near-space. The 36in diameter parachute is designed to yield a descent rate of 1500ft/min (15mph) once back into the thicker atmosphere near sea level.

The bright orange and white gives a high contrast for high visibility during flight and recovery phases. The Project Aether recovery chute is individually hand made in the USA with a 6 sided design using 1.9oz/sqyd (70 Denier) ripstop nylon. The silicone coated parachute makes the parachute waterproof on both sides and is lighter than standard polyurethane coated chutes.

The waterproofing ensures that the chute opens even if soaked in water or rain. All seams are sewn with nylon bonded thread using a durable 5-thread safety lock stitch, overcasting and finished with a clean seam. The shroud lines consist of MIL-C-5040 Type 1A military survival cord at a mere 1/16" in diameter yet has a tensile strength of 100lbs per line. Three reinforced xxx lines, using MIL-C-5040 Type 2A military survival cord, complete the chute at the top for easy in-line connection to weather balloon assemblies or rocket nose cone trains.


Step 6: Radar Reflector

Picture of Radar Reflector

In order for planes to see your balloon, you will need to construct a radar reflector. This is made from cardboard and foil tape and can be relatively inexpensive. I followed edjez's instructable. You can find it here:

Step 7: Camera - A800 Canon

Picture of Camera - A800 Canon
The camera is a really important part of the project because it will document the trip to near space. Many people opt for the GoPro 2 HD video camera which is especially made to handle harsh conditions and hard falls, but since I don't have that much money to spend I brought a regular off the shelf camera from Canon. 

This is a 10 MP camera which you can easily order from But how will it take pictures by itself? That's where CHDK comes in. CHDK stands for Canon Hack Development Kit. It won't hurt your camera (don't trust me).

There's some great tutorials online about how to get CHDK up and running. You must order an SD card that is greater than 4GB in order to get as many pictures as possible. You will want to run the intervalometer for at least 10 second intervals.  This will give you about 2000 photos of the flight. Now, I will remind you that this are photos. If you want a video, I would recommend getting the GoPro. 

Step 8: Take Your HAM Test

Picture of Take Your HAM Test

Ham radio is the best way of getting in contact with your balloon. The MicroTrak All-In-One Ham beacon is a telemetry device which emits a radio pulse containing its current location.  These pulses are picked up by digipeaters, special receiving devices placed on top of mountains and other high places specifically to listen for these APRS packets and then put them online.  Consequentially, the MicroTrak's path can be viewed online at websites such as Google Aprs.

Getting a license is not too difficult.  The best place to start is by finding a Ham club near you.  They will provide you will all the information and assistance you need to get licensed.  If you do not know of any groups in your area, simply learn by taking the practice exam here:  By testing yourself you can determine what you do not know, and pursue that knowledge through the internet, books readily available at a local library or to purchase, or other hams.

Once you are ready you will have to find an exam session (  These are offered multiple times a year in various locations across the United States.  You will only need to take the test for the lowest license class: Technician.  This 35 question multiple choice test and a nominal fee (~$10) will get you your license and a call sign.

Step 9: Purchase the MicroTrak

Picture of Purchase the MicroTrak

Simply place an order at the Byonics website:  You want the MicroTrak AIO version 2, the one with the rubber duck antenna.  Do not get a mag-mount antenna. 

            When you place your order, give Byonics your ham radio call sign, and if you want, an SSID number 1 to 12 which would differentiate your beacon if you are using more than one with the same call sign (Ex:  KJ6MOT-2 or KJ6MOT-11).

I also found that the rubber duck antenna did not transmit the signal very well. I opted for a high altitude dipole antenna from Byonics. This was great for our flight. We mounted it on the side of the payload, and everything worked out great.

UCSD near space has some pretty good details on the MicroTrak as well as some other great resources.

Step 10: PocketFinder

Picture of PocketFinder

Redundancy, Redundancy, Redundancy. This is the magic law in any balloon project. For that reason, you will want to pick out a secondary tracker. You will probably want to pick a tracker that uses a different technology than your primary. For instance, we had a HAM radio as our primary tracker, and a 3G/Cellular GPS for the secondary. 

This 3G/Cellular tracker is called the PocketFinder. It's a small Oreo™ shaped object that transmits its position to You'll want ro order it with 2 months free tracking. This is pretty beneficial. The instructions are pretty simple, but make sure you have it working before you put it in the balloon. 

The PocketFinder is pretty accurate as you can see from the image below. This is a screenshot on my iPhone from the actual place where we found the payload in a 60 foot tall tree. The parachute and radar reflector are still stuck there, so if you want to go get it for me, that would be great. Just kidding. 

Step 11: Payload Box

Picture of Payload Box

To keep everything warm, you'll want to get a good box. This can generally be made out of anything but you'll want to get something cheap. We purchased a 22 quart styrofoam cooler from WalMart that usually holds drinks. These are disposable, and they can usually be found in the Lunch Box / Cold Box isle. If you don't find it at WalMart, go to your local super market or Walgreens. We found them there too. 

You'll need to cut a few holes in the side for the camera, and pack some extra space for everything. 

Step 12: Rope

Picture of Rope

The rope is going to be a very important part of the project. It will carry everything to near space. It also cannot have a break force of greater than 50lbs. We got some Everbilt 3/16 in. x 50 ft. Braided Nylon & Polypropylene Rope from the Home Depot. We bought 2 packages.

Step 13: Heat Packs

Picture of Heat Packs

You'll want to keep everything warm as the box goes up into near space. You'll be above 99% percent of the atmosphere by mass and it gets cold up there. Preferably, you will need chemical heat packs which don't require air to be heated. However, we couldn't find these, so we stuck with heat packs at a small store in New York. You can get these online or at your local hardware store. You'll put these packs next to the camera, MicroTrak AIO, and the PocketFinder. 

Step 14: Knots

Picture of Knots
There are a couple knots that you'll want to familiarize yourself with. These will help you knot everything on launch day. The first knot is called the Double Fisherman's knot. This helps for joining the balloon to the top of the parachute, and any other ropes that need to be joined. It is almost imposible to untie, and thats why we used it in our project. This video below shows you how to tie the double fisherman knot. It's pretty simple, and you can probably master it with a couple practices. 

The other knot you'll want to know is the box sling. This is the knot that goes around the payload box, and connects it to the main flight string by a double fisherman knot.

Step 15: Miscellaneous

Sign (4 copies) - We made a sign with our telephone numbers and a $50 reward if found note. Although we didn't need it, it's good to have. Print out four copies and tape it to each side of the box. 
Extra tape and rope - just in case you need some.
Latex gloves ~10 - When handling the balloon, be sure you never touch it with your hands. That will weaken the structure. 
Tarp - you'll need a plastic tarp from Home Depot. These are usually used for painting. You don't want the balloon to hit anything when you're filling it up. 
Hiking boots - you're going to be going through woods and mountain, make sure you bring some. 
Heat packs - I talked about these in Step 13. 
Extra lithium batteries - you never know if one of your batteries is going to be a dud. 
Hand-held radios - when you're trying to search for the balloon, you may need hand held radios to communicate. 
Water - stay hydrated!
Maps/phones/gps/internet - for locating the balloon upon landing.
Screw drivers/wrenches/pliers/scissors
A hose - you can find a hose at Home Depot that will allow you to connect the balloon to the Helium Tank. You can fit your own regulator if you have one, but it is better to fill the balloon away from the tank. This is a clear 1 inch plastic tubing used in plumbing. There's more information on this in Step 19. 
Scale - you will need a scale to weigh your anchor for 2lbs of extra lift for a 200ft/m ascent rate. 

Step 16: Batteries

Picture of Batteries

For everything that needs a AA battery, like the Canon camera and the Microtrak, you'll want to get yourself at least 12 AA lithium batteries. They usually comes in a blue package. Let me remind you, these are lithium and not lithium-ion.

Lithium batteries work in extreme cold condition, which you will be facing in near space. 

Step 17: Education

Picture of Education

Do some research on near space and things that other people have done. Know the timing of the balloon. Typical flights take about 2 hours. Here's some information on the timing of the flight. Unless you get the high altitude version of the MicroTrak, it will only work under 60,000 feet.

Step 18: Helium Rental

Picture of Helium Rental

It's going to be really hard to find some helium for rental. Many people use hydrogen because it is cheaper. Do not use hydrogen! It's explosive! Currently, there is a world shortage of helium, so try your best to call a few stores. We got ours from Bayview Balloons in Connecticut. They weren't too nice to us, so I don't recommend you to go there. Use google maps and search for helium suppliers in your area. You should get about $150 for 250 cubic feet of helium. You will only need about 100 cubic feet depending on your balloon size. The 600g ballon requires 50-100 cubic feet. 

Do your best!

Step 19: Launch and Retrieval

Here's the procedure we used for launch. Try your best to follow what it says. Everything should make sense if you have all the materials. Ignore the "!" after every sentence, i'm not sure why those are there...

While in car, turn on MicroTrak and PocketFinder and start recording coordinates.
1. Arrive at location. Fold out table and chairs.!
2. Place plastic tarp on ground next to table. Place weights on end end of the tarp to
prevent movement by the wind.!
3. Take helium tank out of car and place tank sideways on ground next to tarp.!
4. Place payload box on tarp with parachute.!
9. Unscrew helium tank cap.!
10.Attach hose or similar apparatus to the helium tank regulator.!
11. Stretch hose so it lays halfway on the tarp.!
12.Attach rope to hose about 10 inches from open end of hose. !
13.This rope is then connected to a pull scale that is anchored to the ground.!
14.Hand out latex gloves for those who are holding the weather balloon during inflation.
Two people will be underneath the balloon. Two or three people will be holding the
side of the balloon to make sure that the wind does not move it. Make sure no one is
wearing shark objects such as watches, eye glasses, or highly gelled hair.!
15.Take balloon out of package being sure to not stretch the balloon.!
16.Lay it out on the tarp and locate the open end. Place hose or similar apparatus 10
inches inside the open end of the balloon. Place two zip ties and one tied off rope
around the neck of the balloon that is on the hose to prevent air from leaking out.!
17. Start helium flow to the balloon. Make sure to encourage air flow inside balloon.!
18.Once the balloon has been inflated, read the scale to determine if there is 6lbs of lift.!
19. Once there is 6lbs of lift, tie off the balloon.!
20. With the balloon still connected to the hose, take two pieces of 3ft string. Take the
first piece and wrap it around the back side of the neck. Draw the length until they
are equal. Make an x and loop the higher string through the other string. Position the
string so it is about 7 inches from the end of the balloon. Bring each side of the string
back around them balloon. Repeat this x pattern until the string covered 13mm of e
neck. Make a final knot. !
21.Remove the balloon from the nozzle and hook it to the anchor.!
22.Take you other piece of trying and wrap it around the balloon just as before. Bend
the neck of the balloon so it overlaps the previous tie. Repeat the same process of
tying the balloon as before. !
23.Tie the top of the parachute to the bottom of the balloon, with the ends of the rope
hanging off. !
24.Attach the rope to the top of the parachute.!
5. Open lid and place gps, camera running CHDK, hand warmers inside box. Make
sure all devices are turned on, but camera is not running. !
6. Close and tape lid shut.!
7. Tie two box sling knots around the box.!
8. Attach two of the box sling strings to the parachute hook, and the other two strings to
the rope of the parachute.!
25.Apparatus should be complete.!
26. Press the shutter button on the camera and confirm that the camera is taking
pictures every 30 seconds. !
27. Confirm that he GPS devices are transmitting.!
28. Remove the balloon from the anchor and make sure the payload does not leave the

Let it go!

Step 20: Conclusion

"We're making space more American. We're making space more democratic. We're making space more available, approachable and real to the average American."  - James Muncy, President of Polispace

Share it, comment on it, and subscribe.


electronizwizzard (author)2013-07-14

Totally awesome as well as an awesome presentation, what a great job you guiys did, I am proud of all of you that took part in this project. I am a ham radio operator an its so cool to see young people taking part in this type of venture, I will vote for your submission, great job.

Stephen LEE (author)2017-02-14

Wow! That's really cool experiment!!

kebmoore (author)2012-08-24

The work that went into your project and into publishing this guide are impressive. Well done!

Do you plan additional flights now that you have all of the prerequsites covered and most of the equipment? Will you be sending additional experiments into near-space?

Cheerfultrout (author)kebmoore2015-11-25

Well, they would still need to replace the baloon and helium, since the balloon pops during launch, and together the balloon and helium would get kinda expensive to replace over time.

When I said "the balloon pops during launch" I meant that it pops during flight, when it reaches maximum altitude.

syates3 (author)2012-08-26

Slightly off topic but it would have been amusing if that box was crafted to look like a Love Cube, just encase anyone saw it from up there lol.

Cheerfultrout (author)syates32015-11-25

That would've been pretty cool :)

gfworx (author)2015-08-22

WoW... This must be the most awesome project and post ever. You are a real inspiration to many learners, young and old, out in the world. Thank you for sharing so freely. Never give up and keep on pushing the envelope. I will definitely be looking in from time to time. May all your projects in the future be successful.

mihir.sahu.355 (author)2015-07-04

can we use ardruino instead of rasberry pi they are costly

nlwilkerson (author)2015-01-23

Thank you so much for this guide! I am running a middle school Science Corps program, and we are planning to launch our first balloon in a few weeks. This guide has been so helpful!

zhho28 (author)2014-06-19

cool one.

dudes (author)2014-06-05

amazing! just a few suggestions, one maybe add another camera, two use a wide angle lens, and three, put of of the cameras on the bottom, looking down.

sconner1 (author)2014-05-06

Compressed gas tanks should stay upright.

sconner1 (author)2014-05-06

Compressed gas tanks should stay upright.

Peterb469 (author)2013-12-16

Hello, I am planning to do a weather balloon launch in a few weeks. I just want to ensure that the balloon has enough lift. How much helium I would need to purchase for about 5.75-6 lbs of lift? My estimate was just a standard 110 cubic feet helium tank.The weather balloon is 1200 grams by the way.

eaglepandey (author)2013-08-25

cool one

eaglepandey (author)2013-08-25

cool one

nearspaceman (author)2013-03-01

um...... your making Space more democratic by making it more American ????

t.rohner (author)2012-08-26

Very nice instructable.

I wasn't aware that getting a HAM license is so easy today in the U.S.
I made mine 30 years ago, in Switzerland ;-)

tstowe (author)t.rohner2013-01-30

It's gotten easier since then.

TechDech (author)2012-08-29

I really like your project, but isn't it a bit risky for a normal person trying this?

techno guy (author)2012-08-29

I dont like the way you have to do all this regulatory government stuff just to send a balloon to space. But never the less, nice 'ible.

nerys (author)2012-08-26

Got some questions.

did the Celluar track all the way to 65k ? at what altitude did you lose the signal from that? what altitude did you reacquire if you lost it ?

robotkid249 (author)nerys2012-08-26

Yea, thanks. The cellular pocketfinder only worked up to about 5,000 feet. However, the HAM radio tracked it through the entire flight up to 65,000 and gave us speed and position reports which was pretty awesome. We only got a signal from the PocketFinder when it was almost near the ground. About the last 10 minutes of flight.

nerys (author)robotkid2492012-08-26

ahhh pity. $149 sounded great !!

I was thinking of going with a SPOT device. $99 a year and you can get them online for under $100. but at $200 I might as well go the extra $100 and get the micro trak.

I plan to push for over 130k (theoretical max is 180k for helium) I might go with hydrogen and push for 150k. its cheaper and you need less of it and it can push higher faster. (it really is not dangerous your 5gallon gas tank is more dangerous) as long as you respect it.

Hydrogen (pure) just does not burn or explode as much as people think it does. now mix it with air and WATCH OUT :-)

eventually I want to send up a "GLIDER" to drop.

and after that I want to push for 200k with a rockoon under the balloon (launch a rocket when the balloon is ready to pop)

robotkid249 (author)nerys2012-08-27

We looked at the SPOT, but their prices were way too high in comparison to the microtrak which would provide a much more accurate signal. The SPOT costs $99 for the unit with a $100 service charge and another $50 service charge if you want tracking. Add it up and you get $250 for a device that doesn't even work too well...

Good luck.

nerys (author)robotkid2492012-08-27

Hmmm I was informed the every 2 minutes "notifications" of where your at it INCLUDED in the $99 a year no extra charge. $50 if you want LIVE tracking.

is that incorrect?

you can get USED spots for around and even under $100

you DO need to 3 axis gimble mount them. they only work of "points" up at the sky :-) if its upside down it will not work.

but again when I was looking at this a micro trak was a LOT more money. $300 is really not bad.

makermike (author)2012-08-27

Very complete Instructable! I've been interested in launching a high-altitude balloon for a while now and have perused various sites on the web for hints and inspiration, so I appreciate the work that went into this Instructable.

One question though--I thought that FAA approval wasn't required if the payload was below a certain weight. Still a good idea to contact them though.

Still hoping to get things together and hoping for the price of Helium to come back down to Earth!

moebuspcgold (author)2012-08-26

The world is running out of Helium for ever, most of the wastage goes in helium balloons like yours. Without Helium, MRI (Magnetic Resonant Machines) machines in hospitals will not be able to function as they need liquid Helium in a closed circuit cooling supply.

Pure Hydrogen is used for met balloons and could safely be used providing the balloon is inflated and launched remotely in a open area. Just google 'Remote Weather Balloon Launcher'.

bstott (author)moebuspcgold2012-08-26

Uh, really? You mean that a party space balloon is going to collapse the birthday, event and helium balloon industry along with destroying our ability for better health? Even the continued distillation from the vast quantities of newly discovered natural gas along with the resultant producing outcome from uranium radiation will not keep up with this youngman's and others scientific explorations? And leave the planet void of vital helium? Wow! Whooda thunk?

I'll keep worrying about the ground and continue recycling....... :)

Good Instructable!!!

moebuspcgold (author)bstott2012-08-26

The amount of Helium that is found alongside Uranium ore is dependent on geological factors and the amount is very minimal.
Helium derived from natural gas or oil is only as abundant as the supplies of the crude product, which as you may know is running out as well. (newly discovered natural gas fields??? Where???)
The price of Helium has quadrupled since 2004 due to demand exceeding supply. If people want to play with balloons and talk funny then expect to pay alot more for it.

bstott (author)moebuspcgold2012-08-27

Prices risi.g because of false rumor and they can. I've traded and do not take to panic but, sense.

New finds? One is, if you listen to rumor it could be one of the biggest is Marcellous (spelling?) Shale in NY, OH, PA, WV. There is reports of another bigger (?) in the mid-west, more in Canada and the government is focusing, as well as business on exploration within the states, finally. One cause, use, excuse for rumor and false commodity imflation, or real is to motivatve private industry to produce. Greed is a mighty motivator. But, if a shortage CT is in use and more technology everday to replace current old stuff.
Anyway, I applaud the youngman and I do conserve and try to be aware too. So, I thank you for more news an insight.

oldboffin (author)moebuspcgold2012-08-26

I didnt realise that !
I knew that the Hindenberg had to use hydrogen because the US wouldnt sell helium to Germany ( at that time )
Until recently we had the biggest franchise of steak houses here in South Africa giving away helium baloons to kids ! I can't say I have seen them lately though..

robotkid249 (author)2012-08-26

:) It was just a reference to making space more accessible. I'm not sure what the rules are in south africa. Good luck

oldboffin (author)robotkid2492012-08-26

just kidding, it did sound bit pretentious !

oldboffin (author)2012-08-26

"We're making space more American. We're making space more democratic. We're making space more available, approachable and real to the average American."

If space is American, does this mean that I have to ask permission from the FAA to launch a baloon here in South Africa ?

England thought once that it could rule the world, and there was a Boston Tea Party :-)

airplanes717 (author)2012-08-26

What was the total cost of the entire project?? Thanks!

grammers (author)2012-08-25

Wow good job! I watched your video before reading the instructable and thought things like, "good thing an airplane didn't hit that" and, "oh no! terminal velocity is going to hurt on the way back down". Then, I realized that you contacted the FAA, made a parchute, tracked the balloon. WOW!!!

nerys (author)grammers2012-08-26

Very cool man! a few notes. you don't need FAA permission unless you go over 4 pounds. you only need to notify them not ask permission.

the timelapse is great !!! nice to see some higher quality pictures on one of these. VERY nice.

robotkid249 (author)nerys2012-08-26

You should have to morals to at least file a NOTAM (notice of airmen) to prevent collision.

nerys (author)robotkid2492012-08-26

You misunderstand or I was not clear.

A NOTAM is not permission. its simply what it says. A Notice TO airmen. nothing more. I give notice all the time for our Rocket Launches and of course they have the OPPOSITE of the intended effect ie they DRAW airmen to the area who are curious and they get annoyed when we don't fly not realizing WE ARE NOT ALLOWED to launch a rocket while they occupy our airspace envelope so all launching ceases till they leave :-) hehe

you ARE required to inform the FAA and that process "WILL" result in a NOTAM.

but that is not permission. that is simply notification. an understandable requirements when in an advanced society where the airspace is heavily used. ie they can not tell you "NO" without cause. you are simply "informing" them so they can be aware of it and so the NOTAM can be filed for pilot safety.

but its important to understand the difference between NOTIFICATION a reasonable societal requirement and "PERMISSION" ie NO you may not do this unless "we" say ok.

the difference is pretty critical in the long run.

blongmier (author)2012-08-26

Sweet job on the launch and nice instructions! I hope this helps more students get their projects to the near-space environment.


spizzak (author)2012-08-26

Why can the rope not have a break force of greater than 50 lbs?

robotkid249 (author)spizzak2012-08-26

FAA rules in case your payload goes into a plane. it can get chewed up easily, I guess.

wilgubeast (author)2012-08-23

Did you enter this into the Hands-On Learning Contest? If not, could you?

robotkid249 (author)wilgubeast2012-08-24

I did and it should show up in the contest page. it's awaiting moderator approval. Thanks for the encouragement!

angelabchua (author)2012-08-24

wow wow wow. awesome video, awesome photos, and documentation!

karalalala (author)2012-08-23

This is so, cool.

kelseymh (author)2012-08-23

Yowza. Congratulations! Is the horizon picture taken from your balloon? If so, you really should say so. And please put up more pictures -- several of your steps have the "no image" hand, because just videos don't count.

robotkid249 (author)kelseymh2012-08-23

Yep, I updated the first Step. Thanks!

"On August 19, 2012, we launch a near space balloon on a high school student's budget from Brookfield, CT, equipped with tracking equipment and a Canon camera programmed to take pictures every 15 seconds. We captured the entire journey on film. "

About This Instructable




Bio: I'm 17. I enjoy making cool stuff, and promoting the "maker" community. Vote for my space balloon in the hurricane laser contest and hands ... More »
More by robotkid249:My Space Balloon: Project Stratohab Success!! High School Student's BudgetElectricity Generating Kite!Wireless Power
Add instructable to: