Edit (3/29/2014): When I first posted this instructible earlier this month I didn't describe what I was going to be using this rig for or where my requirements were derived from, but now that I have gotten some film back I thought I would share.

I needed a way to take low volume high resolution photos of liquid rocket launches and static fire (hold down) tests in the Mojave desert. Last weekend was my first opportunity to photograph such tests with this wireless shutter release on my Pentax film camera and I was very pleased with the results. I have added a results section at the end of this instructable that reflects some of my lessons learned from that weekend.


I needed to take high resolution photos remotely with my Pentax 645 medium format film camera. I could not find any off the shelf solution, let alone one that meet my requirements, so I decided to build my own.


  1. Triggered by a remote TTL level signal or a remote break-wire
  2. Wireless trigger range >100 ft. (expandable to 1000ft.)
  3. Robust method of serial communication to avoid inadvertent shutter actuations.
  4. Mount to camera in less than 30 seconds


  1. A 2.4GHz xBee modem DIO pin changes state based on a user defined input
  2. The xBee modems are configured for DIO line passing, which sets up virtual wires between matching DIO pins on two paired modems, so when the DIO line on the remote node changes so does the matching DIO line on the camera node
  3. The output of the Camera node DIO line pulls a pin high on a simple microcontroller
  4. The microcontroller issues a command to a servo
  5. The servo depresses a shutter release cable
  6. The shutter release cable trips the shutter of the attached camera.


Remove these adsRemove these ads by Signing Up
4DIY CHANNEL5 months ago

Check it out :)

mdickerson65 months ago
Also to drill a D shaped hole. Use the largest drill bit you feel comfortable with and place one hole in each rounded edge and get a 10 piece wood working set from a craft store. One is shaped like a pike it's great for shaping the edges and is sturdier than an exacto knife.
John Culbertson (author)  mdickerson65 months ago

Cool, I have heard of drilling the two holes and filing the remainder, but never using a wood working tool. I am curious, would it work on plastic, like I used for this enclosure?

mdickerson65 months ago
Holy cow! Amazing! Truly amazing!! I spilled my coffee all over the place... Anyway. What was the total cost of the device? And estimate of time spent?
John Culbertson (author)  mdickerson65 months ago

Thanks. This is on the order of a weekend project if you have all the parts.

6 hours programming and learning xBee line passing. My instructions should cut this down to 1 or 2 hours

8 hours of enclosure fabrication and soldering.

For cost breakdown:

$64 for the pair of xBee modems and adapters (look at step1 for much cheaper alternatives if this is out of your budget)

$10 Enclosure

$10 Servo

$20 cable release

$8 Trinket microcontroller

$5 Li-Ion Battery

$15 Ni-Mh battery

$0 Protoboard

$4 hot shoe to 1/4-20 adapter

$0 Misc. connectors and wire I had on hand

Total: $136

audreyobscura5 months ago

Wow! Awesome. Thank you so much for such a thorough build!

Also, I shoot with a mamiya 6x6 - i never thought of doing a mechanical shutter hack like this. genius!

John Culbertson (author)  audreyobscura5 months ago

Thanks! A little jealous of the mamiya.