Solving a 2x2 Rubik's Cube Blindfolded

134,937

79

50

Posted

Introduction: Solving a 2x2 Rubik's Cube Blindfolded

Blindfold solving is an art form consisting of memory and finger dexterity.  This tutorial will server as an introduction into the realm of blindfold solving by starting with the 2x2x2 cube.  The ability to solve a 2x2 blindfolded is important if you want to learn larger layered cubes such as the 3x3, 4x4, 5x5 etc.  The total cost for performing this task is about $10.  The time it may take you to learn this skill varies.  If you already have experience with solving Rubik’s cubes, it may only take a few hours to learn the 2x2 blindfolded.   If you are completely new to solving cubes, it may take you a week of practice to master the 2x2 blindfolded.  No matter what your abilities are now, don’t fret.  Solving a cube blindfolded is a skill you can use to attract soul mates and impress future employers.

Step 1: Supplies

For this tutorial, you will need a 2x2x2 Rubik’s Cube and a blindfold.  You can find a 2x2 cube for about $5 to $11 on any online cube shop.  Blindfolds can be found at your local general store and are usually cheap.

Note:  If you don’t own a 2x2 cube, but own a 3x3 cube, you can still use this tutorial.  The 2x2 cube is equivalent to the corners on a 3x3.  If you follow this tutorial using a 3x3 you will be able to solve the corners, but not the edges.

Step 2: Create a Letter System

The first phase of blindfold solving is memorization.  Before you start memorizing pieces it is critical that you are familiar with your color scheme.  You should set a particular orientation and stick to it.  My cube has the standard color scheme.  The orientation that I will use as a reference in this tutorial is white on top and red in front.  This means orange is in back, green is on the left, blue is on the right, and yellow is on bottom. 

In order to memorize what pieces need to be solved it helps to assign a letter to each individual sticker of the 2x2 cube.  Throughout this tutorial I will refer to my letter scheme for certain pieces, so I will provide it for future use.

In clockwise order from top left sticker:

Up layer: A, B, C, D
Front layer: E, F, G, H
Right layer: I, J, K, L
Back layer: M, N, O, P
Left layer: Q, R, S, T
Down layer: U, V, W, Z

After you have your letter system set up it may take a while to get used to it.  That’s okay!  You will become more familiar with it after you learn how to memorize.

Step 3: How to Solve: Cube Notation

http://learntofish.files.wordpress.com/2010/10/notation_en.jpg



You should be familiar with turning notation.  If you are a little rusty here is a quick reminder:

U – turn the top face clockwise
F – turn the face in front of you clockwise
R – turn the face on the right clockwise
L – turn the face on the left clockwise
D – turn the bottom face clockwise

Note: Adding an apostrophe denotes a counter-clockwise turn (D’) and adding a two denotes a 180 degree turn (D2).  All moves are made imagining you are facing that layer. 


Step 4: How to Solve: Y-Permutation

The method I will teach in this tutorial is the Old Pochmann method.  It was created by Stefan Pochmann.

When solving a 2x2 blindfolded we will only use one sequence of moves, also known as an algorithm.  This algorithm will swap the piece at the [A] position (also known as the buffer) with the [L] position (also known as the helper).  The moves for the algorithm are denoted below.  It is also commonly known as the Y-permutation.

[Y-permutation]: R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R

The picture shown above is what your cube should look like after performing the Y-permutation.  The video shown below demonstrates how to execute the algorithm.  

Note: You should memorize the Y-permutation.  It is the basis for the entire execution of a 2x2 blindfolded.  The more familiar you are with it, the faster you will be.




Step 5: How to Solve: Set-up Moves

You need to be able to solve every sticker on the 2x2 cube by using the Y-permutation.  You can do this by using set-up moves to bring the sticker you want to solve into the helper position at [L].  The following steps outline the procedure for solving pieces:

1) Perform a set-up move to bring sticker into helper position at [L]
2) Execute Y-permutation to swap buffer with helper 
3) Undo the set-up move by performing it's inverse

For example, if you needed to solve the [I] sticker (as shown in the picture above) you would complete the following tasks:

1) Set-up the position at [I] by doing an R’ move
2) Swap the buffer with helper by doing the Y-permutation
3) Undo the setup-move by doing an R move

Set-up moves for each sticker can be rather intuitive.  The key thing to remember is that you will never use any U, L, or B turns.  These turns will affect your buffer position, which is not what we want.  The buffer position will always remain in the same spot.  As a reference, the following is a list for all of the set-up moves you will need.

A :  (N/A) buffer position
B:   R D' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D R'
C:  F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F'
D:  F R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F'
E:  F' D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D' F
F:  F2 D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D' F2
G:  F D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D' F'
H:  D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D'
I:  R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R
J:  R2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R2
K:  R [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R'
L:  [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R]
M:  R' F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F' R
N:  (N/A) Buffer position
O:  D' R [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R' D
P:  D' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D
Q:  (N/A) Buffer position
R:  F2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F2
S:  F2 R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F2
T:  D2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D2
U:  F' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F
V:  F' R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F
W:  R2 F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F' R2
Z:  D F' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F D'

Step 6: How to Solve: Cycles

Now that you know how to solve individual pieces, we will string these together in a cycle to solve the entire cube.  After you swap a sticker from your buffer to the solved position, whatever sticker that was in the solved position is now in your buffer.  Next, solve that piece using a set-up move, Y-permutation, and undo set-up.

Keep swapping pieces from your buffer to its solved position until you solve all the pieces.  Once you solve every piece, the buffer will automatically be solved.

Special Cases:

There are two special cases that might occur when performing a cycle.

Case 1) Your buffer becomes solved before you finish solving all the pieces

This case is represented by the first picture in this step.  In this case, simply shoot the buffer piece to any un-solved sticker to begin a new cycle.  Keep solving pieces until you need to solve a piece that belongs where you placed your buffer.  After that, your new cycle has ended.  If you have solved every piece, the cube should be solved.  If it is not, start a new cycle.

Case 2) A piece is in its correct position, but it is twisted the wrong way

This case is represented by the second picture in this step.  To fix a corner twist, shoot your buffer to any of the three postitions on the twisted corner.  Take note of what sticker was in that position.  That sticker is now in your buffer, so shoot it to its solved position using set-up, Y-permutation, and undo set-up.  The twisted corner should be solved.

Step 7: How to Memorize

Memorizing the cube precedes the solving phase.  You will put your letter system to use when you learn how to memorize.  I will be referring to the stickers associated with my letter scheme as I have displayed previously. 

The method I use to memorize a 2x2 blindfolded utilizes an audio loop.  The audio loop takes advantage of the brain's ability to recall a string of sounds that it hears.  Since the 2x2 cube does not have very many pieces, we can make use of our short term memory to quickly remember and recall using the audio loop.  If you want to move on to 3x3, 4x4, and 5x5 cubes blindfolded, you will want to learn a system that utilizes long term memory.

Here are the basic steps to memorize the cube:

1) Look at what sticker is in your buffer position.  This will be your first letter.  

2) Find where it needs to go and look at the next sticker in your cycle.  

3) Pair up the first and second letters and create a one syllable sound corresponding to those two pieces.  For example, if the first
two pieces I need to solve are [L] and [P] the first sound I will remember is "LoP."

4) Continue through your cycle (breaking into a new one if need be) by creating a sound for each pair of letters until you are finished.  


Note: It is OKAY to speak your memo out loud.  In fact, it will help your brain to remember it.


Step 8: Example Solve: Case 1

I will go through some examples on what I would do when memorizing and solving a 2x2 blindfolded.  The first example demonstrates what to do when you have Case 1, where your buffer becomes solved in the middle of a cycle.  You can follow along by reading the following text and watching the video demonstration below.  

Hold your solved cube in your solving orientation and perform the following scramble:

R' U' R2 U' F2 R F2 R F U'


Note: Since the buffer is already in solved position, I start by shooting it to the [L] position.


Memorization:

Letters: L, J, D, F, W, U, V

Audio Loop: LooJ, DooF, WU, Vee

Execution:

L:  [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R]

J:  R2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R2

D:  F R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F'

F:  F2 D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D' F2

W:  R2 F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F' R2

U:  F' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F

V:  F' R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F


Step 9: Example Solve: Case 2

The second example demonstrates what to do when you have Case 2, where you have a twisted corner. I have provided a video demonstration below.

Hold your solved cube in your solving orientation and perform the following scramble:

U2 F U F' R F2 U' R' U' 


Memorization:

Letters: C, S, L, W, R, J, M 

Audio Loop: CaSs, LoW, aR, JaM

Note: The piece positioned at the B, J, M position is twisted.  To solve it, we placed our buffer in the J position, then solved by shooting to the M position.  

Execution:

C:  F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F'

S:  F2 R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R F2

L:  [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R]

W:  R2 F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F' R2

R:  F2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F2

J:  R2 [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R2

M:  R' F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F' R


Note: The reason why the (O,T,Z) piece was already solved in both examples is due to the nature of 2x2 scrambles.  A 2x2 scramble only uses R, U, and F moves.  This means that the (O,T,Z) piece stays in the same spot if you solve in the same orientation that you scramble in.  

Since the 2x2 does not have fixed centers, it does not matter what orientation you solve in.  You should try and choose the orientation that will have the most number of pieces already solved.  This will reduce your move count.




Step 10: Conclusion

You should now be able to solve a 2x2 cube blindfolded.  It may take you 1, 5, or even 20 attempts until you get a successful solve.  My best advice is to practice and be patient.  In the video below, I demonstrate a "speedsolve" in which I solve the 2x2 blindfolded in 33.97 seconds.  With enough practice, you may be able to become as fast or even faster than me!  

One of the greatest feelings I have when blindfold solving is taking off the blindfold and seeing a solved cube.  It is my hope that I can share this feeling with you.  


Share

    Recommendations

    • Space Challenge

      Space Challenge
    • Microcontroller Contest

      Microcontroller Contest
    • Spotless Contest

      Spotless Contest
    user

    We have a be nice policy.
    Please be positive and constructive.

    Tips

    2 Questions

    It's the dang buffer position I'm not getting. I get the whole buffer concept as its similar to sorting in CS. What I don't get what your saying is how a certain piece is just "the buffer". From what I read, it's whatever piece your starting with so let's assume I'm always picking UBL as in this video (at 0:20). You then say the phrase "and I know that it is (pause) already one of my buffer pieces". What? I don't understand what that means.

    Last thought: If we start with the 1st example, you say "this piece" with "this" being UBL followed by "should go here" with here being UFR. How? Why? It has a green sticker so why wouldn't it go left? I must be severally mentally handicapped if everyone else is getting it.

    By the way, the BrandonM account was me. I forgot my OP account for a bit.

    Hi Mark! Sorry I rarely get on here to check these comments. The buffer "position" is UBL. I always start my cycles with the piece in UBL. I said "I know that is one of my buffer pieces" because that PIECE is green-white-orange, which when solved is in my buffer "position" at UBL.

    I'm not really sure what you're asking about in your last thought. In Example 1, I solve the FUR piece with F2 D [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] D' F2.

    Your explanation of buffer and helper could use a lot more explanation. I don't even know what I'm looking for. For instance, you say: "This algorithm will swap the piece at the [A] position (also known as the buffer) with the [L] position (also known as the helper)". Ok fine...but is the [A] position and where is the [L] position. You never explain what they are or where to find them.

    Mark,

    The graphic in step 2 displays where the [A] and [L] positions are. If you're holding the cube with white top red front (standard color scheme), the [A] position is at UBL and the [L] position is at RDF.

    42 Comments

    in example solve 2 u say that the buffer is in c position when its in the a position. i just dont get it

    Carla, you have to look at the buffer position to know which piece is first in your cycle. I was saying that the [C] sticker was the first piece to solve. [A] is just the position of where the buffer is on the cube, not the piece that was physically in the buffer position at the time.

    can we use any other set-up move (excluding U, L, or B) like for C can we use R' [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] R instead of F [R U’ R’ U’ R U R’ F’ R U R’ U’ R' F R] F'

    No, because if you read through the list, that set up move is used for the [I] position at RUF. It's the same piece, but a different sticker and orientation. The corner will end up twisted if you do that.

    Yes but the corner might become twitsed

    GREAT!

    Can you make an instructable on how to solve a 3X3 cube blindfolded?

    I planned on it, but it never came to fruition.

    Now I don't understand how to know if the corner is twisted or not when you are blindfolded.

    You should catch if a corner is twisting during memorization. You should be familiar with where each piece belongs on the cube. For example, I know that at UFR, it should be white, red, and blue, with the white side facing up. The piece is twisted if red or blue is facing up. If white is on the right usually shoot to the [I] position, then the [C] position. That should solve it.

    Here's a quick tip... When you are doing the memo just put your finger on every solved piece... If you think you dont have enough fingers, Believe me you do... And if you think touching all pieces is not possible... Well try finger tricks :P