Picture of The Antenna experiment.
We are going to test the feasability of getting electricity from the atmosphere. We will use several kinds of antennas to put electricity to work. Just a simple dipole and unipolar antennas.. This is  intended this to be just a prototype for a much larger unit you would like to build. The antennas are meant for indoor use so that wet weather will not be a factor in preventing the experments in being completed.  Ages 10 and up.


To teach that radio wavet can be captured create electricity.

To teach a basis alternating and direct current.

To educate that we can use natures own power instead of fossil fuel.

To compare student hypotheses with the actual results of the experiment

Remove these adsRemove these ads by Signing Up

Step 1: Hypothesis

Picture of Hypothesis
There is enough energy in the atmosphere to capture and put to work.

Step 2: What's needed.

Picture of What's needed.
Screenshot from 2013-08-10 00:49:31.png
6 or more - rolls of cheap aluminium foil
1 - 10 -20 foot rope or other solid material such as a pvc pipe to hold the foil
Lots of tape

50 or so foot of copper wire

2 - ladders or something that can be used to hold up the antennas

Rectifiers (see circuit)
4 - gemanium diodes 1n34 or equivalent (or any diode if that is all you have)
2 - 0.2 uf 50v ceramic capacitors
2 - 100 uf 50v electrolytic capacitors

1 - rectifier bridge 50v or more

1 varialble capacitor form an old am radio,

25 or more 1n914 diodes (or equivalent)

Tv antenna transformer



Tv with dtv support

Dual ended alligatpr clip wires

Step 3: Strategy.

Picture of Strategy.
Each student is to take the materials and then put together various indoor antennas. They will need to use a bit of geometry to make the plates. By testing the coils with a compass they can see how magnetism works.  They will also see the force of wind can be put to work. They will get some experience at putting a project together as an engineer might do with a prototype. Lastly see the unit they have built create electricity. For younger students the soil and magnet platform could be pre-made.