## Step 4: Nerdy stuff - measuring sound.

As mentioned in the last step, sound is a vibration, we measure the frequency of this vibration in hertz (Hz), which is the number of cycles of the vibration per second. Wikipedia tells us that "The frequency (f )is equal to the speed (v) of the wave divided by the wavelength (lambda) of the wave".

So in other words - frequency = speed / wavelength or:

f = v / lambda

To find the wavelength, we use basic algebra - multiply by lambda and divide by f to get.

lambda = v / f

To test this we can take the sound wave used to demonstrate the device in the video as an example (360Hz), and use or rough speed of sound for v.

lambda = 257(m/s) / 360Hz

This gives us a value for lambda of about 0.71 meters. Which should be close to the distance between the peaks of the flames. Though the actual measured value may differ from what is calculated given the above mentioned scenarios.

Note - for some reason the lambda symbol keeps turning into this when I save "Ã�Â»". So I've replaced the symbol with the word "lambda". I apologize for any confusion.

-------

Special thanks to user cposparks, who found an error on this page when it was originally published, I've since made best efforts to correct it.

-------

**Signing Up**

It's been three years (to the day!) since this Instructable was published, and unfortunately, I no longer have the device, so am unable to go back and check for confirmation, one way or the other. However, your observation's very astute, and I've started to do some research on the issue, though have found conflicting reports. As soon as I've got things figured out one way or another, I'll update the Instructable to reflect that - though until then I'll put a disclaimer on the top of this page.