Tell us about yourself!

Complete Your Profile
  • The pictures of Victoria crater expose the feebleness of the official “explanation.” The crater “has a distinctive scalloped shape to its rim, caused by erosion and downhill movement of crater wall material.” The crater actually looks quite fresh, with very little debris and no sign of the large heaps of rubble to be expected at the bases of the large scallops. If the rubble has been covered by wind blown sand, we have two problems. First, there is practically no air on Mars to shift sand grains. And second, there is a radial pattern on the floor of the crater that is inexplicable by wind-blown dust or sand.So what does that make of the floor of the crater “occupied by a striking field of sand dunes?” They look like no field of dunes on Earth. ...

    see more »

    The pictures of Victoria crater expose the feebleness of the official “explanation.” The crater “has a distinctive scalloped shape to its rim, caused by erosion and downhill movement of crater wall material.” The crater actually looks quite fresh, with very little debris and no sign of the large heaps of rubble to be expected at the bases of the large scallops. If the rubble has been covered by wind blown sand, we have two problems. First, there is practically no air on Mars to shift sand grains. And second, there is a radial pattern on the floor of the crater that is inexplicable by wind-blown dust or sand.So what does that make of the floor of the crater “occupied by a striking field of sand dunes?” They look like no field of dunes on Earth. Dunes have a difference of slope across their ridges. And to form “network dunes” requires episodes of winds blowing steadily from different directions. They resemble instead shallow intersecting bowl-shaped depressions...Victoria crater appears to be a short-duration anode scar, or “spark” crater, where melting is insignificant. In laboratory experiments it is found that the anode spark scar on a “contaminated” surface develops many arc “spots” at the center of a roughly circular scar. In a very short time the central arc spots move out to form a ring. The spots enlarge and join into a ring. For a time the entire arc current passes through the annular ring. If it were to continue, melting would occur, obliterating the fine scalloped structure of the crater wall. In experiments there may be a hundred or more spots.I would suggest that the “sand dunes” are the result of the central arc spots, forming overlapping circular depressions (see diagram above). Certainly, the orthogonal ridges have more in common with a corona discharge pattern than they do with sand dunes. They may therefore be solid, glassified sand, rather like that found in dry soil following a lightning strike. Such glassified sand is known as a “fulgurite.” It is noteworthy that the Apollo astronauts found clumps of glass-crusted soil near the centers of small (1 to 5 foot) craters on the lunar surface. It raised a stir because the glass was a surprise. In addition, orthogonal lineaments in the lunar soil were reported. They cannot have been there for long.The blast effect of the cosmic “spark” together with the electrical stripping of ionized surface matter, produced the clean crater and surrounds. The sudden outward movement of the arc spots may have formed the radial pattern on the crater floor. The scalloped crater wall is simply the erosion signature of the irregular ring of enlarged anode spots.Wal Thornhillhttp://www.holoscience.com/wp/the-real-impact-of-victoria-crater/

    View Topic »