303Views8Replies

# . Plot the magnitude of the couple M required to hold the system in equilibrium as a function of θ for 0 ≤ θ ≤ 2π

The magnitude of the force P applied to the piston of an engine system during one revolution of crank AB is shown in the figure below. Plot the magnitude of the couple M required to hold the system in equilibrium as a function of θ for 0 ≤ θ ≤ 2π.

No really. This is my

finalanswer.;-P

Note: I think Instructables is no longer allowing me to upload files with certain file extentions. So the attached octave script has been renamed from .m to .m.txt

Select as Best AnswerUndo Best Answer

I was immediately stymied by the word

## equilibrium

how can that possibly occur except at rust-out....The whole concept is is to extract excess torque [M] from shaft [A]

Is this a gender language difficultie ?

BTW kudos to those great math mecinations being presented here !

Select as Best AnswerUndo Best Answer

I'm going to try this one more time, then I promise I'll leave it alone.

This time I'm going to try to solve this using work (or energy) balance. I start by renaming the side lengths of that triangle to some shorter names:

AB = a = constant = 90 mm = 0.09 m

BC = b = constant = 200 mm =0.20 m

AC = x is a variable that depends on θ

For the energy balance trick, I assume

M*dθ = P*dx

and I divide both sides by dθ and get

M = P*(dx/dθ)

So that derivative (dx/dθ) is what I want to find. I need to start with some equation that connects x and theta. For that I use Law of Cosines.

According to the Law of Cosines: b

^{2}= a^{2}+x^{2}- 2*a*x*cos(θ)Then I complete the square:

(x +a*cos(θ))

^{2}= b^{2}- a^{2}+a^{2}*cos^{2}(θ)Then use a trig identity,

(x +a*cos(θ))

^{2}= b^{2}- a^{2}*sin^{2}(θ)Then take the square root of both sides,

x +a*cos(θ) = (b

^{2}- a^{2}*sin^{2}(θ))^{(1/2)}Then take the derivative of both sides, with respect to θ, and

if I did that right, I get :(dx/dθ) = a*sin(θ) ( 1 - cos(θ)*(b2/a2 - sin2(θ))(-1/2) )

Then that's pretty much it. Now I can substitute (dx/dθ) into

M = P*(dx/dθ) = P*a*sin(θ) ( 1 - cos(θ)*(b2/a2 - sin2(θ))(-1/2) )

and I think that's the answer. P is P(θ), a function of θ, and the plot M(θ) is just the product of multiplying those two functions of θ together.

Select as Best AnswerUndo Best Answer

I think they are looking for a quick tech route.

Like RT= Rmax-Rmin/2/#R or Rmax-Rmin/3/#R=RT

Select as Best AnswerUndo Best Answer

I don't see why you are using an energy balance ? There's a GRAPH showing the function, all you have to do is fit it to something, and for some reason, its piece-wise linear.

Select as Best AnswerUndo Best Answer

This attempt had a serious error in it: the wrong formula for torque. So I am going to delete it. My other answer is better, and I think reading both would be confusing.

Select as Best AnswerUndo Best Answer

Lemme try this again...

Point B traces out a circle with A the center.

I choose A as the origin, and the point B can be written in terms of its x y components as:

Bvector = (AB)*cos(theta)*i + (AB)*sin(theta)*j

And the moment Mvector is pointing into the page, so

Mvector = -M*k

where {i,j,k} are unit vectors in the {x,y,z} directions. Mvector is the negative z direction, pointing into the page. M is the magnitude of Mvector. (AB) = 90 mm = the length of AB

The moment Mvector is the cross product of Fvector, the force at pointB, crossed with Bvector

Mvector = Fvector x Bvector = -M*k = (Fx*i + Fy*j) x ( (AB)*cos(theta)*i + (AB)*sin(theta)*j)

-M*k = Fx*(AB)*sin(theta)*k - Fy*(AB)*cos(theta)*k

Divide both sides by -M

k = -(1/M)*Fx*(AB)*sin(theta)*k + (1/M)*Fy*(AB)*cos(theta)*k

And I think that has the solution: Fx= -(M/(AB))*sin(theta), Fy= (M/(AB))*cos(theta)

Next, I am guessing that rod BC just sort of magically connects the x component of Fvector and x-component of Pvector, which is all in the x direction. So that the magnitude of Pvector and the magnitude of the x-component of Fvector are equal to each other, like so:

(M/(AB))*sin(theta) = (1/(AB))*M*sin(theta) = P

I divide both sides by (1/(AB))*sin(theta) and get:

M = P*(AB)/(sin(theta))Now I have an expression for M as a function of theta. Since P is a function of theta, and sin(theta) is a function of theta, and (AB)=90 mm is a constant.

Notice M(theta) equals infinity when theta=0 or theta=pi. I hope that's not a problem.

Also curiously, I never used the length of that other rod, BC, which is kind of weird, but like I was saying before: This is just a guess. I am not totally confident this is the right answer.

Select as Best AnswerUndo Best Answer

M=PK (K=coefenciency)

Select as Best AnswerUndo Best Answer

Good Luck!

Select as Best AnswerUndo Best Answer