Water Filtration Using Fabric

105K5125

Intro: Water Filtration Using Fabric

In this instructable we will show how effective different types of fabric filter water while explaining the science behind the process.

This type of filter is a common solution to the problem of obtaining clean water in many parts of the world, especially rural parts of developing nations. It is a fairly simple process that involves only materials that are available in most parts of the world.

A friend of ours is away in Kenya working on various projects having to do with sustainability including filtering water for drinking.  Where he is now, "water guard" tablets are used to kill bacteria, but it does nothing to improve the clarity or taste of the water so he has been experimenting with different filtering techniques.  Unwanted clothes from all over the world are imported to Kenya so there is a wide variety of fabrics available which makes fabric a good option for filtration.

Note that this filter can only filter particles and color out of the water. It cannot filter bacteria or viruses. Water filtered through this filter is not meant for drinking, and should be boiled before being consumed.

This instructable is the culmination of a project for the Spring 2011 Stuff of History class at the Olin College of Engineering in Needham, MA.

STEP 1: Types of Fabrics

For this project, we were not sure if any fabric would work at all for any sort of filtration so we decided that our best bet would be to try as many different types of fabric as possible, both in what material they were made out of and in how the fabric was made (woven, knitted, etc.).
We went to the fabric store and got some different remnants, which are cheap pieces of fabric that are the leftover, smaller pieces of fabric that the fabric store sells for half off.  We also went to a thrift store and bought a lot of cheap clothes that were made out of all different materials and were constructed in different ways.

Woven fabrics have less give than knitted fabrics which is good for filtration since if fabrics stretch (as knits do), the holes in between the fibers get larger and let more particles through.  Another factor that affects the amount that the fabric stretches is the actual fiber that the fabric is made out of.  Some fibers have more "give" than others, but we were not sure which ones those would be.

STEP 2: Polyester Fabric

Woven polyester fabric obtained from fabric store. Not very stretchy.
Looking at the SEM photographs, the fabric is weaved producing the same pattern on the front-side and back-side of the fabric. Looking at the photo with 85x magnification, the fabric is not very tightly weaved since a lot of the fibers are not lying straight and the pockets produced by the weave is not very visible.


STEP 3: Polyester Pajamas

Polyester pajamas we found at a thrift store.  This was also woven and not stretchy.
In the pictures from the microscope, the longer weft stitches are clearly visible, which it what give this fabric its smooth, satin-y texture and shiny appearance.  Unfortunately, that could mean that the warp threads might separate under pressure of water and might not make the best fabric for filtration.

STEP 4: 50/50 Cotton-Polyester

Cotton-polyester t-shirt.  Clearly knitted and stretchy.
In these microscope pictures, the knit of this fabric is very clear.  That indicates that the fabric will stretch, causing the holes in between the threads to become larger and is not ideal for filtration.

STEP 5: Nylon Knit Fabric

Nylon sports jersey.  Knitted and stretchy.
The pictures from the microscope show that this fabric is knitted and although when testing the fabric by hand is not very stretchy, it still has enough give in it to open holes between the fibers and not filter the water very well.

STEP 6: Silk Shirt

Woven silk shirt.  Not stretchy.
This shirt is silk and woven, which is a good combination of a strong, fine, fiber and a non-stretchy weave, however in the microscope pictures, it is clear that the warp and weft threads are not the same width, which could lead to the threads shifting around and creating holes between them therefore, not a perfect filter.

STEP 7: Silk Pants

Hot pink flower silk pants.  Very evenly woven and not stretchy at all.
These awful pants were a designer brand and our most successful filter.
In the microscope pictures, you can see that the threads used for the warp and weft are the same size and create a very even, solid woven pattern.

STEP 8: Testing

To determine which, of the fabrics we selected, would make the best filtration material, we initially filtered water through a single layer of each of the fabrics, measuring the cloudiness of the water before and after filtration. For the purpose of consistency, our first tests were carried out by simply allowing the force of gravity to push the water through the material. We used a piece of PVC pipe for this purpose and attached the filter materials with a rubber band.

We measured the "cloudiness" of the water using the turbidity tester in our biology lab, though gauging your results by eye (keeping samples from each test to compare) is just as good. We tested our filter fabrics with water mixed with dried clay, which we sieved down to particles of 20 microns (in diameter) or smaller. This was for the purpose of standardization - you can also try using murky water from a nearby pond, or making your own water mixed with dirt or other suspension particles.

We also measured how long it took for all of the water to filter through the fabric (testing a standard quantity of water each time). It is most important that a filter be effective, but it is better if it can do so in a short amount of time.

These were our results for our initial tests (using 30 ml of cloudy water, one layer of fabric, and only gravity as the driving force for the filtration):

See the first table image for our results

These results are similar to what we initially anticipated.  The finely woven silk from the awful pants worked to decrease the turbidity the most, taking the water from .832% turbidity to only .011% turbidity.  Unfortunately, it took almost an hour to filter a small amount of water.  The knitted nylon football jersey did almost nothing, taking the turbidity from .927% to .912%, a difference that is barely visible to the naked eye.  This was probably because of the knit of the fabric, which was stretchy, not tightly woven.


Pressurized Tests

For the second set of tests, we took our three most effective fabrics, folded them all twice over, and tested how effectively they filtered the water with a higher applied pressure. Once again, we used a rubber band or two to secure the fabric material (be careful - with this test it's more likely for the fabric to slip off), and also a vacuum flask (an Erlenmeyer flask with a side-arm protruding from the neck) with a pipette bulb attached to the arm to pump air into the flask, forcing the water out.

There are a lot of other ways to force the water through the fabric, though I would suggest using something with at least two openings (we tried with a plain bottle, but it was very troublesome trying to force the air back through the fabric, especially once the clay began to cake the cloth in the interior of the flask).

For this set of tests, we obtained the following results:

See second table image

These results also make sense according to what we have learned about the weaves of the fabrics.  The tightly woven pink silk from the pants decreased the turbidity the most, while the polyester fabric, which was less tightly woven, did little to decrease the turbidity.


STEP 9: Conclusion

For the choice in fabric, it is necessary that it be tightly woven, and that it is made from a stiff material (any stretchiness will allow the gaps between the fibers to widen, and the water to seep through without being properly filtered). One material which is most commonly suitable for this purpose is silk, because unlike synthetic materials, silk fabrics do not exhibit a wide range of flexibility because silk fibers are very fine and therefor able to be woven more tightly. 

19 Comments

Dear Danger, I love this Instructable! Wondering if you think felt produced from knits might be effective too.
Hey, as an Olin alum ('06), I was so pleased to come across this tutorial as I look into the best filter material to process clay that I've dug from my yard. My goal is to lose as little clay as possible in the filtration process. Time to to search my fabric box for the equivalent to "awful silk pants!"
Going to try the silk to filter out dirt from melted snow water so I can use the water in my ultrasonic humidifier
Danger, you never cease to impress me! Have you ever heard of a small project called LifeStraw? It's sort of a miniature filtration system built for personal water drinking usages for the middle east.

A LifeStraw will get you killed in the middle east as it does NOT filter viruses! In fact, most filters do NOT filter viruses effectively or at all

thanks it was very help full

what you used at the end of the bottle?
https://www.instructables.com/files/deriv/F34/QNEP/GN77VZFZ/F34QNEPGN77VZFZ.LARGE.jpg
can you tell me what are the materials you used? please tell me because i have to the project in it
Super!An information I'll remember for sure, and will keep an old silk scarf handy just in case :) . This should be edited and reformated in a Kindle format with an added cover to be sold as a survival book - you could sell quite a few I think. It can't hurt to pay schooling fees right? In any case, good job!
Great project and really well written!
The highly magnified pictures of fabric weave were as interesting as the purpose they were going towards. Very thorough and well done instructable.

Did you guys do any subjective tests on taste?
Yeah, I love the microscope pictures, I might get them as poster or something.
We didn't test for taste in this project, although that would be interesting.
Indeed, very well written. Also, I'd like to say informative. I've heard about using fabric to filter your water before boiling or using chemicals, just to get the particulates out. I had wondered which fabrics would be best for this, but never gave it much thought. Thank you for this 'ible.
Very well written, and very comprehensive. Good job.