Review of my first PCB design for a current meter shield?

I am completely new in designing circuits and PCBs and would appreciate your feedback on my first project. I want to measure the current flowing through an AC line using the ACS712 current sensor (IC1). The analog output (which is a proportional voltage between 0V and 5V) is converted using an ADS1115 (IC2). The digital signal is passed to an underlying Wemos D1 mini board via I2C, which contains an ESP8266 to process and send the data to a server. Furthermore, an AC/DC module (HLK-PM01) is mounted on the bottom side of the PCB to power the components.

Question by DELETED_MakiY2 1 year ago


How do I wire a LTC3780 to my arduino and display?

I'm re-purposing an old ATX psu into a variable bench psu. The current project has LM2956's however they're faulty, I can only see 11.78V max instead of 29+V. The other down side to these modules is the lack of current control. The project also has an arduino Mega handling acs712 hall current effect sensors and Voltage dividers for my 3.3v 5v 12v terminals and two LDC dispays 16x2 and 16x4. So I was wondering assuming I keep the basic design of the psu can i replace the LM2956s for a single LTC3780, How can I wire the LTC3780 to the arduino and allow me to see the current change.  Thanx in advance.

Question by icey.hood 3 years ago  |  last reply 2 years ago


How detect the speed changes of fan using a controller ic?

I have a ceiling fan manual regulator, the voltage output that i got when different speed is 80v,120v,180v,200v respectively in my project i want to detect the fan speed changes. that means if fan is running in 1st speed then user turn into second speed it should be detect(by using in Arduino) .how can detect this?I tried to use a current sensor(ACS712) at output of a regulator then detect the current for different speed..but the variation still small cannot be detectable.

Topic by wounder 5 weeks ago  |  last reply 23 days ago


Hall sensor question

Hey all.I want to be able to measure the current draw through an AC wire in a confined space. I'm thinking hall sensors would be ideal for this due to small size and less chance of frying things (as opposed to a split-core transformer).Unfortunately all of the hall current sensor projects I've found here on instructables are for the pre-made ACS712 board. This is a no-go for me because of size, the need for cutting the wire to make the connection, and also cost is a factor too.Are there other options? I see a lot of three-wire sensors in through-hole transistor packages out there which would be ideal, but can you get the sensor voltage out of any of these, or is it strictly on/off?Any hints welcome.

Question by PS118 7 weeks ago  |  last reply 7 weeks ago


Im repurposing my atx power supply to be a bench Psu. I need help with code please?

In this project. I want to use an arduino mega, 2 lcds, and 6 acs712 current sensing modules and 2 Lm2596 dc step up/down module The set up I have in mind is like so; arduino is powered by ATX stand by power (IF possible) there is a push button which turns on the programing to start the monitoring and also grounds the ATX and GReen wire to supply power to all the rails. This set up will calculate Voltage and current printting them on the lcd's. The constant voltages will be printed on on lcd and the variable voltages on the other lcd. Ive written most of the code. I just want it to make sense. I've added a picture, which my project is based on.. the difference are, im not using I2c bus for lcd, im measuring current, and im printing info on two different lcds. thanks for the help. here is the code #include #define PWROK_PIN 4 // change to w.e pin i end up using connected to green? investigate #define PWRBTN 2 // closing push buttom connection makes it high #define PWRTRANS 6 /*-----( Declare objects )-----*/ // Variables will change: int PWRSTATE = HIGH;         // the current state of the output pin int buttonState;             // the current reading from the input pin int lastButtonState = LOW;   // the previous reading from the input pin // the following variables are long's because the time, measured in miliseconds, // will quickly become a bigger number than can be stored in an int. long lastDebounceTime = 0;  // the last time the output pin was toggled long debounceDelay = 50;    // the debounce time; increase if the output flickers // initialize the libr with the number of the intface pins double sensePinVthree = A0; double sensePinVfive = A1; double sensePinVfivesb = A2; double sensePinVtw = A3; double sensePinVrone = A4; double sensePinvrtwo = A5; //The current double sensePinIthree   = A6; double sensePinIfive   = A7; double sensePinIfivesb = A8; double sensePinItw  = A9; double sensePinIVrone = A10; double sensePinIVrtwo = A11; //setting up default or naming variables. double Voltsthree; double Voltsfive; double Voltsfivesb; double Voltstw; double VoltsVrone; double VoltsVrtwo; double Currentthree; double Currentfive; double Currentfivesb; double Currenttw; double CurrentVrone; double CurrentVrtwo; LiquidCrystal lcd(12, 11, 5, 4, 3, 2); LiquidCrystal lcd2(12, 10, 5, 4, 3, 2); //remove this if not working or glitchy void checkPowerOK(){   // when green is grounded   if (digitalRead(PWROK_PIN) == HIGH) {     lcd.setCursor(4, 1);     lcd.print("ON ");     lcd.setCursor(9, 3);     lcd.print("hello");   }   else if (digitalRead(PWROK_PIN) == LOW) {     lcd.setCursor(8,1);     lcd.print("OFF");   } } void togglePower(){ static unsigned long last_interrupt_time = 0; unsigned long interrupt_time = millis(); // If interrupts come faster than 200ms, assume it's a bounce and ignore if (interrupt_time - last_interrupt_time > 500) {    // set the power:   digitalWrite(PWRTRANS, PWRSTATE); //trans is pin 6 } PWRSTATE = !PWRSTATE; last_interrupt_time = interrupt_time;  } void setup() { analogReference (DEFAULT); pinMode(PWRBTN, INPUT); pinMode(PWRTRANS, OUTPUT); attachInterrupt(0, togglePower, RISING); digitalWrite(PWRTRANS, PWRSTATE);     lcd.begin(16, 4);   lcd2.begin(16, 2); // Print a message to the LCD. lcd.setCursor(0,0); //take this out if monitor buggy lcd.print("Bench PSU");// this code be fine lcd.setCursor(0,1); lcd.print("Monitor  V1.0"); lcd.setCursor(0,2); lcd.print("ICE"); lcd.setCursor(4,3); lcd.print("ROBOTICS"); lcd2.begin(16, 2); // replace with the date_time function lcd2.setCursor(0,0); lcd2.print("Hope 4 the best"); lcd2.setCursor(0, 1); lcd2.print("prep 4 the worst"); delay(3000); lcd.clear(); // wipes old message lcd.setCursor(5,0);  lcd.print("Building the Future"); lcd.setCursor(0,1); lcd.print("since   2014"); //Inset the time function somewhere in here lcd.clear(); lcd2.clear(); //lcd.createChar(0, blockChar);     Voltsthree=0; //setting my variables to Zero   Voltsfive=0;   Voltsfivesb=0;   Voltstw=0;   Currentthree=0; //Setting current to Zero on this Lcd   Currentfive=0;   Currentfivesb=0;   Currenttw=0;       VoltsVrone=0; // doing the same but for second lcd   VoltsVrtwo=0;     CurrentVrone=0;// same for current   CurrentVrtwo=0; } void loop () {checkPowerOK(); // check to see if power ok   Voltsthree = ((analogRead(sensePinVthree)) /218.0) *5; // or 7 aalso the 218.0 value will chaange to mine specific   if(Voltsthree <0){     Voltsthree=0;   }   Currentthree =(((analogRead(sensePinIthree)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(Currentthree <0) {     Currentthree=0;   }   Voltsfive = ((analogRead(sensePinVfive)) /218.0) *5;   if(Voltsfive <0){     Voltsfive=0);   }   Currentfive =(((analogRead(sensePinIfive)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(Currentfive <0) {     Currentfive=0;   }   Voltsfivesb =((analogRead(sensePinVfivesb)) /218.0) *5;   if(Voltsfivesb <0){     Voltsfivesb=0;   }   Currentfivesb =(((analogRead(sensePinIfivesb)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(Currentfivesb <0) {     Currentfivesb=0;   }   Voltstw =((analogRead(sensePinVtw)) /218.0) *5;   if(Voltstw <0){     Voltstw= 0;   }   Currenttw =((analogRead(sensePinItw)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(Currenttw <0){     Currenttw=0;   }     VoltsVrone =((analogRead(sensePinVrone)) /218.0) *5;   if(VoltsVrone <0){     VoltsVrone=0;   }   CurrentVrone =(((analogRead(sensePinIVrone)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(CurrentVrone <0) {     CurrentVrone=0;   }     VoltsVrtwo =((analogRead(sensePinVrtwo)) /218.0) *5;   if(VoltsVrtwo <0){     VoltsVrtwo = 0;   }   CurrentVrtwo =(((analogRead(sensePinIVrtwo)) / 212.0) -2.55) / 0.6666667;// why 0.667   if(CurrentVrtwo <0) {     CurrentVrtwo=0;   }   //1st line   lcd.setCursor(0,0);   lcd.print("                "); //clear the line 1st line   lcd.setCursor(0,0);   lcd.print(Voltsthree);   lcd.setCursor(5,0):   lcd.print("V");   lcd.setCursor(7,0);   lcd.print(Currentthree);   lcd.setCursor(14,0);   lcd.print("A");     //2nd line   lcd.setCursor(0,1);                  // clear and print second line   lcd.print("                ");   lcd.setCursor(0,1);   lcd.print(Voltsfive);     lcd.setCursor(5,1);   lcd.print("V");   lcd.setCursor(7,1);   lcd.print(Currentfive);   lcd.setCursor(14,1);   lcd.print("A");     //3rd line   lcd.setCursor(0,2);           // clear line 3   lcd.print("                ");   lcd.setCursor(0,2);   lcd.print(Voltsfivesb);     lcd.setCursor(5,2);   lcd.print("V");   lcd.setCursor(7,2);   lcd.print(Currentfivesb);   lcd.setCursor(14,2);   lcd.print("A");     //4th line   lcd.setCursor(0,3);           // clear line 4   lcd.print("                ");   lcd.setCursor(0,3);   lcd.print(Voltstw);     lcd.setCursor(5,3);   lcd.print("V");   lcd.setCursor(7,3);   lcd.print(Currenttw);   lcd.setCursor(14,3);   lcd.print("A");     //1st line   lcd.setCursor(0,0);   lcd.print("                "); //clear the line 1st line   lcd.setCursor(0,0);   lcd.print(VoltsVrone.);   lcd.setCursor(5,0);   lcd.print("V");   lcd.setCursor(7,0);   lcd.print(CurrentVrone);   lcd.setCursor(14,0);   lcd.print("A");     //2nd line   lcd2.setCursor(0,1);                   // clear and print second line   lcd.print("                ");   lcd.setCursor(0,1);   lcd.print(VoltsVrtwo);     lcd.setCursor(5,1);   lcd.print("V");   lcd.setCursor(7,1);   lcd.print(CurrentVrtwo);   lcd.setCursor(14,1);   lcd.print("A");   }

Question by icey.hood 3 years ago  |  last reply 3 years ago


500W electric scooter control and instrumentation with Arduino mega

1. Introduction DC 500W motor control with an Arduino mega to limit starting current and to vary the speed of the scooter. The battery is in 24V, 10A.h. The following table summarizes their characteristics: https://i58.servimg.com/u/f58/17/56/35/17/a014.jpg https://i58.servimg.com/u/f58/17/56/35/17/a111.jpg 2. Bibliography: Link download : sketch_escooter_feed_back_reel_V1.ino https://drive.google.com/file/d/0B_fB3GAsM02FSlRTWHdyRkhuUW8/view?usp=sharing escooter_ampli_SIMULINK.mdl https://drive.google.com/file/d/0B_fB3GAsM02FOW9OdmlhdDhJZGc/view?usp=sharing escooter feed back ISIS.DSN https://drive.google.com/file/d/0B_fB3GAsM02FOXdRWFN5OWRMQkE/view?usp=sharing youtube  :  "study trotinette electric e-scooter 100W et 350W, wiring"  youtube https://www.youtube.com/watch?v=QqJ2-YiE8Tg&index;=75&list;=PLfZunVn_gcq7EOurXuWU2sRFmh6CbiUiL Article: «Study of electric scooters 100W and 500W (Arduino), Revue 3EI 2017» Pdf? Book «I realize my electric vehicle» at DUNOD 3. Open loop program To test the programming, we simulate the program in ISIS, as can be seen in the following figure. In addition, we have an LCD display to display data (duty cycle corresponding to the PWM at 32Khz, motor current, motor voltage, action on the pushbuttons, 4 push buttons are used. BP1 to manually increment the duty cycle, BP2 decrement it. BP3 set the duty cycle to 0, corresponding to the brake contact. The speed of the motor is practically proportional to the duty cycle https://i58.servimg.com/u/f58/17/56/35/17/a211.jpg We made our own current amplifier called a step-down chopper but it is possible to buy a shield There are many cards for Arduino to control DC motors especially of low powers and also of great powers as can be observed on the following links.http://www.robotpower.com/products/MegaMotoPlus_info.html http://www.robotshop.com/en/dc-motor-driver-2-15a.html https://www.pololu.com/file/0J51/vnh3sp30.pdf https://i58.servimg.com/u/f58/17/56/35/17/a310.jpg But all these chopper shields measure the current internally but there is no current limitation. In order to have a current limitation, an analog current loop is required using specialized AOP or IC or a fast digital current loop. But what should be the value of the limitation current? The choice of the current value is normally for the 1-hour operation service in order to be able to carry out relatively long climbs without reaching the critical temperature of the engine. In our case, the limitation current must be Limiting motor = Power / Upper battery = 500W / 24V = 20A In addition, the power transistor of the chopper can only support 50A in our case. But in open loop, it has no current regulation, so as not to exceed the maximum current, a ramp of the duty cycle will be used. A 0.1 second interruption routine will be used to measure the voltage of the current (sample measurement, sample). This sampling time is arbitrary but does not allow to be faster than the rise time of the current because the electric time constant of the motor is L / R = 1.5 ms. Open loop operation with a 25.5s (8bit) ramp and 0.1s interrupt routine provides a good understanding of the operation of a DC motor drive. The display will only be done every 0.2s to have a stability of the digits on the screen. In addition, a digital filtering will be done on the current and the voltage on 4 values therefore on 0.4s. [b] Algo open loop [/b] Interrupt Routine All 0.1S Read voltage and current Loop loop (push button scan) If BP1 = 1 then increment PWM If BP2 = 1 then decrement PWM If BP3 = 1 then PWM = 0 Displaying variables every 0.2s Code: [Select] // include the library code: #include #include #include #define SERIAL_PORT_LOG_ENABLE 1 #define Led     13       // 13 for the yellow led on the map #define BP1     30       // 30 BP1 #define BP2     31       // 31 BP2           #define BP3     32       // 32 BP3 #define LEDV    33       // 33 led #define LEDJ    34       // 34 led #define LEDR    35       // 35 led #define relay   36       // 36 relay #define PWM10    10      //11   timer2    LiquidCrystal lcd(27, 28, 25, 24, 23, 22); // RS=12, Enable=11, D4=5, D5=4, D6= 3, D7=2, BPpoussoir=26 // Configuring variables unsigned   int UmoteurF = 0;  // variable to store the value coming from the sensor unsigned   int Umoteur = 0; unsigned   int Umoteur2 = 0; unsigned   int Umoteur3 = 0; unsigned   int Umoteur4 = 0; unsigned   int ImoteurF = 0;  unsigned   int Imoteur = 0; unsigned   int Imoteur2 = 0; unsigned   int Imoteur3 = 0; unsigned   int Imoteur4 = 0;            byte Rcy=0 ;    // 8bit duty cycle unsigned    int temps; // the setup function runs once when you press reset or power the board void setup() {   pinMode(Led, OUTPUT);   // Arduino card   pinMode(LEDV, OUTPUT);   pinMode(LEDR, OUTPUT);   pinMode(LEDJ, OUTPUT);   pinMode (PWM10,OUTPUT);     // Pin (10) output timer2   //  digitalWrite(LEDV,LOW);   Timer1.initialize(100000);         // initialize timer1, and set a 0,1 second period =>  100 000   Timer1.attachInterrupt(callback);  // attaches callback() as a timer overflow interrupt   lcd.begin(20, 4);    Serial1.begin(9600);   TCCR2B = (TCCR2B & 0b11111000) | 0x01;         //pin 10  32khz    http://playground.arduino.cc/Main/TimerPWMCheatsheet                                                   //http://www.pobot.org/Modifier-la-frequence-d-un-PWM.html   //   analogWriteResolution(bits)      https://www.arduino.cc/en/Reference/AnalogWriteResolution lcd.setCursor(0,1); lcd.print("Rcy"); lcd.setCursor(10,1); lcd.print("Um"); lcd.setCursor(5,1); lcd.print("Im"); lcd.setCursor(10,1); lcd.print("Um"); lcd.setCursor(20,1); // 4 lines display * 20 characters lcd.print("BP1+"); lcd.setCursor(25,1); lcd.print("BP2-"); lcd.setCursor(29,1); lcd.print("BP3=0"); } // Interruptions  tous les 0.1s void callback()  { temps++; //toogle state ledv for check   if ( digitalRead(LEDV)== 1 ) {digitalWrite(LEDV,LOW);}     else {digitalWrite(LEDV,HIGH);}     analogWrite(PWM10,Rcy);   // frequency Umoteur=analogRead(A0); Imoteur=analogRead(A1); Imoteur2=Imoteur; Imoteur3=Imoteur2; Imoteur4=Imoteur3; ImoteurF=(Imoteur4+Imoteur3+Imoteur2+Imoteur)/4 ; Umoteur2=Umoteur; Umoteur3=Umoteur2; Umoteur4=Umoteur3; UmoteurF=(Umoteur4+Umoteur3+Umoteur2+Umoteur)/4 ;   }// End routine // Loop corresponding to main function void loop() {    // BP + LED   if ((digitalRead(BP1))==1) {     lcd.setCursor(20,0);      // Column line     lcd.print("BP1");     digitalWrite(LEDR, LOW);        digitalWrite(LEDJ, LOW);     Rcy++;                        // PWM incrementation     if ( Rcy>254)  {Rcy=254;}     delay(100);               //8bits * 100ms = 25S increment 25ssecond slope     }        if ((digitalRead(BP2))==1) {     lcd.setCursor(20,0);     lcd.print("BP2");             Rcy--;      if ( Rcy<2)  {Rcy=2;}  // PWM almost at 0, engine stop         delay(100);      digitalWrite(LEDR, HIGH);     digitalWrite(LEDJ, HIGH);     }   if ((digitalRead(BP3))==1) {     lcd.setCursor(20,0);     lcd.print("BP3");      Rcy=2;               // PWM almost at 0, engine stop     } if (temps>=2)  { lcd.setCursor(0,0); lcd.print("                "); // Erase line lcd.setCursor(0,0);     lcd.print(Rcy); lcd.setCursor(5,0); ImoteurF=(ImoteurF)/20;     //resistance (5/1024)*(10/0.25ohm) si ACS712 66mV/A                            // For resistance 1ohm (ImoteurF) / 20; Simulation 5/25 lcd.print(ImoteurF); lcd.setCursor(10,0); UmoteurF=UmoteurF*10/38;                              //10/38   10/30 simula if (Umoteur>ImoteurF){UmoteurF=UmoteurF-ImoteurF;  }  //U-R*I lcd.print(UmoteurF); temps=0; }// End if time    } // End loop https://i58.servimg.com/u/f58/17/56/35/17/dsc_0614.jpg Since there is a limit of 9000 characters in the forum below Open loop program feature previous The interrupt routine lasts only 250 microseconds, the loop of the main program which scans the action of push buttons is 13micros and the display time of all data is 11ms. Thus, it is possible to improve the sampling period and thus the speed of the regulation of the current. The Arduino makes it possible to make the instrumentation of the scooter so to know the power, the consumption in Ah and Wh, to measure the speed, to know the consumption according to Wh / km, to measure the temperature of the engine, Have a safe operation. But for now we will see how to limit the current 4. Closed loop program, limited current control The sampling period will increase to 0.01 seconds (interrupt routine) If the current is less than the desired value, then the duty cycle can be increased or decreased to the desired value which is the setpoint. On the other hand, if the motor current is greater than the limiting value, there is a rapid decrease in the duty cycle. So as not to exceed the value of the duty cycle if it is saturated to 254 maximum and to the minimum value 6. Code: [Select] if (Imoteur<4000)                    // No current limitation at (20A * 10) * 20 = 4000   {if (consigne>Rcy)   {Rcy=Rcy+1;}   // Pwm ramp + 1 * 0.01second pure integrator    if (consigne    if ( Rcy>254)  {Rcy=254;}           // Limitation of duty cycle    analogWrite(PWM10,Rcy);   // Frequency 32kHz timer2}         } if (Imoteur>4000)  { Rcy=Rcy-5;              // No current filtering, to be faster                     if ( Rcy<6)  {Rcy=5;}       // Rcy is not signed, nor the PWM therefore Rcy minimum must not be less than 6                   analogWrite(PWM10,Rcy);   // Frequency 32kHz timer2}                        } 5. Closed Loop Program, Limited Current Control with Acceleration Handle An acceleration handle provides a 0.8V voltage when not operated and a 4.5V voltage when the handle is fully engaged. Instead of using pushbuttons to increase or decrease the speed setpoint, an acceleration handle will be used Code: [Select] Upoignee=analogRead(A3); // The relation in Upoign and the setpoint which corresponds to the duty cycle corresponds to if (Upoignee>100) { consigne=(Upoignee/2);     //0=a*200+b    et 255=a*800+b                      consigne= consigne-100;                   }                            else { consigne=0;   }               if (Upoignee<100) { consigne=0;  }     // redundancy     6. Temperature and safety program of the motor with the current measurement The outdoor temperature measurement can be easily performed by the LM35 component which charges 0.01V by degrees Celsius Code: [Select] temperature=analogRead(A2); //lm35 0.01V/°C temperature=temperature/2;       // Temperature coefficient lcd.setCursor(5,2); lcd.print("      "); lcd.setCursor(5,2); lcd.print(temperature);   // Display in ° C lcd.setCursor(9,2);      // Erasing secu display lcd.print("     ");   if (temperature>80 ) {lcd.setCursor(9,2);         // If motor external temperature is above 80 ° C                      lcd.print("secuT");                       Rcy=0;} In addition, thermal safety by measuring the motor current will be added. If the limitation current is greater than 10s then the motor will no longer be powered for 30s. A "secu" display will appear on the LCD display. This safety makes it possible to cut the motor on slope too high and when blocking the engine but it would be necessary to add the measurement of the speed in the latter case Code: [Select] if (timesecurite>=10000 ) {flagarret=1;      // If limitation current for a current of more than 10s                               timerepos=0;                               consigne=0;                               Rcy=0;                                 timesecurite=0;}       //   Then stop engine during a downtime    if (flagarret==1 ) {lcd.setCursor(9,2);         // If limiting current for a current of more than 20s                      lcd.print("secU");  }     //   Then stopping the motor for a stop time and display                                                     if (timerepos>=30000 &&  flagarret==1) {flagarret=0;                                           lcd.setCursor(9,2);      // After a rest time here of 30s                                            lcd.print("       ");   }   The display can be observed if the temperature is above 80 ° C https://i58.servimg.com/u/f58/17/56/35/17/a017.jpg Thermal safety by measuring the motor current (digital thermal relay) which allows to know the image of the internal temperature of the engine would be ideal. But for this, it is necessary to know well the thermal modeling of the motor. 7. Measurement of the energy capacity of the battery The energy capacity of a battery is in A.H, we will display the value in mA.H to have a high accuracy. The capacity will be in A.Second in the following equation. So to have in mA.H, it will be divided by capacity by3600. Capacity (A.s) n = I * Te + Cn-1 with Te = 0.01s and I multiplied by 10 So in the interrupt routine Code: [Select] capacity=ImoteurF+capacity ; And in the display Code: [Select] lcd.setCursor(0,3); // Display of energy capacity lcd.print("C mA.h="); capacity1=capacity/(18000);   //18000=3600*5  5=> Current measurement coefficient lcd.print(capacity1); To check a current of 10A with an adjustable resistor and after 30s, the capacity must be 83mA.H 8. Power and modeling with SIMULINK Modeling helps to understand the vehicle and its control. In addition, it is possible to compile the control part directly into the Arduino program from simulation under Simulink. But it will not be possible to simulate the instrumentation with the LCD display. In the following figure, we can observe the simulation of the programming of the chopper with the current limitation with Simulink. In the following figure, the green box shows the duty cycle control to vary the speed and the red border the current limitation. The controller of the control is here a simple integrator but it is possible to carry out a multitude of control. https://i58.servimg.com/u/f58/17/56/35/17/azub_c15.jpg In the previous figure, it can be observed that the current is well limited to 25A from 2s to 9.5s. Then, the current reaches 10.8A under established speed regime at 22.5km / h. The dynamics are similar to the tests carried out. With a slope of 5%, the cyclic ratio reaches only 100% as can be seen in the following figure. The speed will reach painfully 19km / h with a current of 24A and a motor power of 580W. See article: Study of electric scooters 100W and 500W (Arduino), 9. First conclusion It is easy to control a 500W DC motor with an Arduino and some components So repair many scooters that are in DC motors. But it takes some knowledge (automatic, engine) to know how to properly manage the engine and limit its current so as not to damage it The display of the speed, the distance, the operating time to know the Watt.km / km can also be realized with a menu 2. The .ino program as an attached file, But it is not possible to put an attached file in ISIS electronic labcenter? What is this forum? It would be desirable that the compiler could generate the.cof to debug in Isis and test the program line by line .... Arduino still has to make a lot of effort to be on the same level as other microcontrollers 10. speed measurement (tachometer) Velocity measurement is carried out using a hall effect sensor SS495 or A1324 which counts each revolution of the wheel. It is enough to enter the perimeter of the wheel of the scooter (130mm of radius therefore 0.816m in the case To have the speed, it is enough just to divide the number of turn of wheel on an arbitrary time of 1s to have a minimum speed of 0.81m / s therefore of 2.93 km / h. In addition, an average filter with 3 values will be used to display the speed. At 25km / h, there will be 8.5 laps. To count the turns, an external interrupt routine will be used on input INT0 21 of the mega card. http://www.locoduino.org/spip.php?article64 To simulate the speed, a pulse on input 21 will be used with a duty cycle of 10%. https://i58.servimg.com/u/f58/17/56/35/17/a018.jpg Code: [Select] void INT0b21() {   Tspeed++;   // External interruption to count the number of turns } // In the set up declare the interrupt routine when the 5V edge of the magnet detection is done   attachInterrupt(digitalPinToInterrupt(21), INT0b21, RISING );  // External interruption // In loop if (temps09>=5)  {        // 1 second loop lcd.setCursor(13,2);      // Erasing speed lcd.print("kph     "); lcd.setCursor(16,2); speed1=Tspeed*2937;      //1tour*816*3.6/1s=2.937km/h speed2=speed1;           //Tspeed (rate/seconde) speed3=speed2; speedF=(speed1+speed2+speed3)/3000;   // To put in kph lcd.print(speedF,1);    // Display to the nearest tenth Tspeed=0;   // Reset counter temps09=0;  //reset time } To improve the accuracy of the velocity measurement, it is possible that the sampling time of the velocity measurement is dependent on the velocity. For example: For speeds less than 10km / h sample at 1second, but above 10km / h sample at 2 seconds. 11. Distance measurement for autonomy The distance corresponds to the total number of turns of the wheel multiplied by the perimeter of the wheel. So do not set the number of turns to 0 for each sample. On the other hand, the reset of the distance will be done when pressing the reset of the Arduino Mega. The distance display will be displayed to the nearest second. At 32km / h, it will take 2 minutes to do 1km as can be seen in the following figure: https://i58.servimg.com/u/f58/17/56/35/17/a019.jpg Code: [Select] void INT0b21() {   Tspeed++;   // External interruption to count speed   nbrRate++; } lcd.setCursor(13,4);      lcd.print("km      ");  // distance=(nbrRate*816)/1000;  //distance m distance=distance/1000;  //distance km lcd.setCursor(15,4);      lcd.print(distance,1);  You can observe the electrical installation with the chopper, the arduino, and the display when the program is set up https://i58.servimg.com/u/f58/17/56/35/17/dsc_0613.jpg 12. Synthesis The RAM space is used only at 4% and ROM space at 3%, for an Arduino mega. So we could take an arduino a little smaller. But, there are 8 Lipo cells to make the 24V power supply to power the engine via the chopper. Therefore, the voltage measurement of each element will be on the Arduino with a JST connector. This measurement makes it possible to know if a cell with an internal resistance which begins to pose a problem and to know if the balancing of each cell has indeed been carried out. It is possible to switch to 36V with 12 cells also with the arduino mega without using an external shield that multiplex 24 analog inputs on input A0 It is possible to send all data to a smartphone via Bluetooth HC06 via pins 20, 21, RX1 and TX1. But the application under android realized under JAVA Studio can not be shared on this forum. This part will not be explained. After having made the instrumentation of this scooter, a study should be carried out on the precision of the measurements, it is possible to read "Instrumentation of a low-power electrical motor vehicle" eco marathon "type Revue 3EI N ° 81, July 2015 http://www.fichier-pdf.fr/2015/09/07/instrumentation-vehicule-faible-consommation-eco-marathon/

Topic by Iutgeiisoissons 2 years ago