Hello all, this is my first post! I have been theorizing for a while about coilguns, and have been doing calculations. here is how it goes: A single Lithium polymer battery can hold up to 3.3 Ah and discharge at about 30c (safely). We multiply 3.3Ah by 30c and get 99 A of continuous discharge. That’s a LOT of current, but, it is still not enough to fire a good projectile. So, I’m planning on having four of these hooked up in parallel to give out 396A. This is quite a bit of dangerous current, so my wiring will have to be gauge-perfect. The magnetic field that this produces is about 9.9 teslas, as twice much as your average MRI machine. Yes, I’m utilizing a miniature MRI to shoot stuff. If you want to know how much force an MRI puts out, here is a great video to show you https://www.youtube.com/watch?v=6BBx8BwLhqg. I am planning on having a 2,000 turn coil, with the average distance from the projectile being 1cm. The ammunition is going to be BB bullets, which means our cross-sectional area is at least 7.65*10-4m2. Using those numbers, the initial force on the BB is 3,015,030N. This is enough to lift up 25 semi-trucks. On paper, this seems magnificent. However, I’m accounting for about 2% efficiency, taken into account at this step, giving us 60,300N. This is still an enormous force to take to a .5g BB I’m implementing the Impulse to be .05s using standardized E = F * t, this gives us 3,015 joules of energy. Huh. that’s way more than we should expect. Let’s take into account the 2% efficiency rating again, and we get a more realistic number: 60 joules. 60 joules is ridiculous for a BB pellet. We’ll use Ek = 1/2*m*V2 to solve for V. I got about 1,553 m/s. This is faster than most guns shoot regular bullets. I will be using a 2-stage setup, and will make sure to use proper electrical equipment. My question to you is; How accurate are these calculations? if I build this thing, what can I excpect?