DIY Electro-Magnetic Levitation!




About: I am a tech maniac; from media, marketing and design to alternative energy and more. Check out my website for links to all my projects.

This is a project that will amaze and inspire! What good is all of that science know-how if we can't do something cool with it, right?

With this project we are going to use a couple of components that are easy to make or find to build a jaw dropping, mind bending Electromagnetic Levitator, or EMLEV as I call it.

With the help of some simple circuitry, a magnet, a Hall Effect sensor and a few other components you will be able to levitate objects in mid air!

Let's get started!

Teacher Notes

Teachers! Did you use this instructable in your classroom?
Add a Teacher Note to share how you incorporated it into your lesson.

Step 1: What You'll Need

For this project we will need a controller circuit, a power source, an EM coil and a magnet along with the hardware and tools to put it all together.

The parts list is as follows:

Circuit Board


(1) Small Circuit Board
(1) LM7805 Voltage Regulator
(1) MIC502 IC
(1) LMD18201 IC
(1) SS495 A Hall Effect Sensor
(1) 470uF Capacitor (electrolytic)
(1) 1uF Capacitor (ceramic)
(1) 0.1uF Capacitor (ceramic)
(1) 0.01uF Capacitor (ceramic)
(1) 2 Slot Input Jack (+/-)
(2) 2 Wire Connectors

(1) 12v/1a Power Supply

(1) LCD Voltage Display (optional)
(1) Green LED (optional)
(1) 10K Resistor

(20g 150-300 turns)
(1) Steel Bolt

Various Colored Wire (18-24g)

(2-3) Neodymium Disc Magnets

(3) 8"x10" Plexiglass Sheets
(4) 12" x 5/15" Threaded Rod
(24) 5/16" Nuts
(24) 5/16" Washers
(8) 5/16" Rubber Caps (optional)

Tools shown include soldering iron and solder, drill and bits up to 5/16" and you'll also want to have some electrical tape or shrink wrap, glue and 5/16th wrench on hand.

All the parts are available HERE:

Step 2: Theory and Core Components

Why can't we just levitate metal objects with a magnet at the right distance? Because, as a ferrous material nears a magnetic field, the force increases exponentially. This is described by what is called the magnetic inverse square law which states:

Intensity1 / Intensity2 = Distance1 / Distance2

So, there is no point in space where a magnet or electromagnet will naturally suspend an object without making contact. Once in the field, there is no turning back!... Unless...

A propagating magnetic field can be shown in 2D diagrams or on magnetic viewing film as lines of force emanating from the poles. Even on an oscilloscope it is impossible to tell much about the movement and direction of the field with only snapshots in two dimensions (like this notorious illusion). When observed in 3D this field can be seen and felt to be toroidal and in respect to time we begin to see that a propagating helical field emerges. This is the same in the case of an electromagnet, and when the field collapses it does so in the opposite direction. This is described by what is usually referred to as Flemings Right and Left Hand Rules.

So, in theory, it would be possible to create alternating vortices/helices in order to adjust an object to a desired position. After doing some calculations based on the formula above we find that it is only possible by alternating these fields precisely and quickly (50,000 times per second or more!)

Problem? Not at all. With a few components we can create a propagating and collapsing electromagnetic field controlled by a sensor which detects the field strength and a circuit which applies the appropriate field to an electromagnet. Components can all be found individually here or as a kit here to make this project fast and easy.

Now that we have all of our components ready, let's get started!

Step 3: Build the Enclosure

Building our enclosure is quite straight forward with the recommended materials but feel free to use whatever you've got lying around. This super simple enclosure was inspired by this awesome robot to show off all the internal components. When complete, the enclosure should be 8"Wx10"Dx12"H.

First, we will stack and secure our plexiglass and measure and drill four holes near the corners being sure to leave space from the edges and drill with incrementally larger bits to avoid cracking. When complete we will have four 5/16th inch holes in the corners of all three plexiglass sheets. *Be sure to note the orientation for a symmetrical fit.

Next, we will drill a hole or holes for our input jack on one of the sheets. This may vary depending on your jack but should be near the rear of the enclosure.

We will now begin building the enclosure. Start by inserting the four 5/16" threaded rods into the holes of one of your sheets. Secure the sheet about 1.5-2 inches from the bottom of the rods with one washer and nut on each side of the plexiglass and add a rubber foot on the bottom of each rod. Make sure everything is level before continuing.

Next, we will add a nut and washer about 3-4inches from the top of our rods and place the sheet with the hole for the jack on top.

The last step to our enclosure will be securing the last sheet of plexiglass to the top once we add the components in the next step.

Step 4: Mount and Secure Components

Now that we have a platform, we can build and install our components.

This relatively simple circuit and solenoid pair can be built according to the attached diagram or you can get a pre-built one here. Note that the SS495 gets mounted to the bottom of the coil. Adding an LED allows you to verify power and a digital voltmeter allows you to detect a load for tuning purposes, both optional, they can be wired directly to the circuits 12v input with an in-line 10k resistor on the hot lead (+). It's fun to know that one of the circuit's ICs is designed for a motor controller and the other is meant for a fan, but put them together with a few other components and we can use it to levitate objects in mid air!

We can then wire the jack to the circuit's input noting the circuit diagram and remember that the jack's case is the ground (-).

Next, we will connect Outputs 1 and 2 from our LMD18201 IC to our solenoid coil. Insert a steel bolt into the coil's center and to the head of the bolt mount the SS495 A Hall Effect Sensor to which we will connect our leads according to the diagram. Pre-built components will include connectors that can just be snapped together.

It may be helpful at this point to secure everything temporarily, carefully connect power and test the solenoid's field with your magnet.

Once satisfied, you may secure your components to the platform. The circuit should be upright to allow airflow and near the jack, the solenoid should have the side with the sensor facing down and the optional LED and LCD can be placed wherever is convenient. Adding some shrink wrap and wire covers at this point makes everything neat and helps avoid short circuits and tugged wires.

Lastly, to further secure and cover everything we will add our final plexiglass sheet. First add a nut and washer to each rod, then the last plexiglass sheet and adjust it down so that the top sheet makes contact with your solenoid, tightly holding it in place. Once in place and level, add four more washers and nuts and cap with your rubber end caps.

Step 5: Your EMLEV Is Complete! Time to Tune and Test.

We're almost complete; but we'll need to do a few calculations and a little tuning before we can start wowing friends and colleagues.

When mounting our solenoid, our orientation did not take polarity into consideration. Therefore, we will need to select the correct pole of our magnet to face our coil. To do this connect power and begin bringing the magnet into the solenoid's field. One side of the magnet will attract continuously, the other will have a tendency to lock in place several inches from our coil, make a note of this side of the magnet. Be careful not to get too close; both poles will attract violently if brought too near to the energized coil.

Now that we know which pole of our magnet we are using, we will now determine the weight which it can hold. Too little weight and the load will attract without levitating, too much weight and the magnetic field will not be able to overcome gravity and your object will fall. You can use random trial and error to find the optimal weight by attaching random objects to your magnet, however I suggest an approach which leads to more quantified results. Using small nuts and bolts, incrementally add them to your magnet and test. Once you find a balance point (you'll feel a slight click as it locks into place), note the weight of the load using a small scale. Then add or remove small amounts of weight to find your range and optimize for stability. You can then use this as a reference and start levitating anything within this weight range which is usually between 45-55 grams not including the magnet.

When functioning correctly, connect an oscilloscope to see the fields in action! Thanks to the readings from my DSO nano we can see precisely when the changing field are occurring and why.

Step 6: Prepare to Inspire and Amaze!

Congratulations! You have made the impossible possible!

Your EMLEV should now be complete, functioning and will levitate any item in the determined weight range. Now we can choose an object to levitate. Try mounting the magnet to a stone or attach nails or nuts, attach a keepsake, the possibilities are endless, these guys even levitated a live frog!

I chose a large tablespoon for effect.

"Do not levitate the spoon; that's impossible. Instead, only try to realize the truth. There is no spoon."
- para. The Matrix (1999)

This device will blow minds; eyes will bulge, jaws will drop and heads will explode! Is it magic? Is it science? Well, the only difference between a magician and a scientist is a scientist tells you how its done.

Thanks for checking out my Instructable and I can't wait to see what you levitate, leave pictures in the comments. Think this Instructable is cool? Let me know by clicking vote on the top of the page!

Sensors Contest 2016

Second Prize in the
Sensors Contest 2016

Make It Fly Contest 2016

Second Prize in the
Make It Fly Contest 2016



    • Indoor Lighting Contest

      Indoor Lighting Contest
    • Make It Fly Challenge

      Make It Fly Challenge
    • Growing Beyond Earth Maker Contest

      Growing Beyond Earth Maker Contest

    70 Discussions


    1 year ago on Step 1

    Hi there! This is a very fun instructable, thanks for making it! Me and a few others have been working on replicating it and are not having much luck. Would you be willing to go into more specifics on the core of the solenoid you use, or where you bought it from?

    For those of you who are attempting the project, I have found that if you use the wrong core of the solenoid, it is doomed to fail. You need a powerful enough core to boost the electromagnet and attract the permanent magnets, but not one that is more powerful than the effect of the electromagnet itself (aka, you have to be able to attract and repulse the permanent magnet - not just make its attraction weaker).

    3 replies
    DrewPaulDesignsNicolas Gautier

    Reply 11 months ago

    To make your own coil will require some trial and error based on your particular setup. It may require more effort than the average "Instructable-r" would care to exert, though I am happy offer a few tips that may help get your project going.

    Firstly, function testing your solenoid/hall effect sensor unit should be performed without much regard for stable levitation. Simply ensure that, firstly, at a given point in space your neodymium magnet is being attracted and, secondly, at a point linearly nearer to the solenoid the sensor reacts to the magnets field and turns off power to the system. This point will feel like an inaudible "click" into place. From there, tuning can be accomplished by changing the weight of the object to be levitated and the neodymium magnet. Add/remove weight incrementally, by the gram, and document your results. If no configuration produces stable levitation in your tests, you must reconfigure your solenoid/sensor pair to either increase the range of the sensor, decrease the range of the solenoid's EM field or vice versa. Document your changes and repeat the process until stable levitation is reached.

    It seems you have observed and interesting characteristic of this phenomenon. Perhaps a larger, more powerful core-less solenoid may be more appropriate and would surely isolate this particular variable.

    Keep in touch, let me know if you have more questions and keep me updated on your progress!

    Abhaya Kumar

    Question 1 year ago

    Is there any technique to find out correct pair of solenoid and magnet strength?

    1 answer
    DrewPaulDesignsAbhaya Kumar

    Answer 1 year ago

    Trial and error. Also, keep in mind that you may need to add weight to your magnet in order to get it to stabilize properly.


    1 year ago


    I want to create a cheaper version of this project. Do you think I could use an Arduino to control the height, for the Hall sensor, for the driver, a 10k resistor, create my own coil and mount, and skip the capacitor and voltage regulator?

    3 replies

    Reply 1 year ago

    I am not entirely sure that would work but you could certainly give it a try. If not, there is a full kit available here:

    Give it a try and let us know how yours comes out! Post your pictures here for everyone to see when you're done.


    Reply 1 year ago

    Thank you so much for your prompt reply. It will take me quite a while to wait for parts to come and build it but I will post here when I'm done.


    1 year ago


    I have been trying to levitate my objects from last 6 months and none of my efforts is successful yet, I matched the schematic in your project with mine and I am pretty sure it's same....I am attaching the pictures of all the components I used. I also tried by varying the weight from 10-80 grams (excluding the weight of magnet discs) with the increment of 5 grams.The power supply I am using is 12v 5A.The size of the cylindrical neodymium disc is 14.5*2.5 mm. I also tried by combining 2 and more neodymium disc ( at most 6 neodymium discs together ).I used L7805CV instead of LM7805 and LMD18201T instead of LMD18201.The hall effect sensor, I am using is 95A 501. I am really curious to levitate some objects, and thanks for this instructable

    1 reply

    Reply 1 year ago

    Hi. I commend your efforts. It appears that you may be using the incorrect/imbalanced components, though. You can get a kit here that includes everything you need and will work the first time:


    1 year ago

    Thanks for creating this instructable!! I googled to find a way to levitate a decorative halloween skull before the big day in a couple weeks and found this.

    What do you figure the quick and dirty might be to levitate a plastic skull with glowing eyes...say approx 2lbs?

    MANY thanks and best regards.

    3 replies

    Reply 1 year ago

    Great! I'm glad you enjoyed it!

    The best route would be to reduce the weight of your plastic skull. Get it down to about 50 grams and this device will work perfectly. Cover the stand in a black cloth and it will look awesome!

    Here's the link to the parts you'll need:


    Reply 1 year ago

    Thank you for your reply Drew; however might I not be able to simply up the suspension loading capacity by adding turns to the induction coil? a higher attraction force obviously means more weight capacity or is the circuit controller the limit to the force potential somehow?


    Reply 1 year ago

    My pleasure. It will take a bit more than adding a few turns to the coil for a number of reasons. Primarily though, the scale is not linear and the size of your circuit/coil increases exponentially with reference to the weight which is levitated.


    1 year ago