Joule Thief Filament Lamp

2,763

59

12

Introduction: Joule Thief Filament Lamp

About: I am an electronic artist living in Brooklyn, NY. I work with LEDs, microcontrollers, and analog electronics to create objects that I find beautiful.

LED filaments are thin, stick like LEDs. They are used in many Edison bulb look-a-like LED bulbs.Each of those thin sticks contain many - 20 to 30 LEDs connected in series. So they are quite bright and energy efficient, however typically require over 70V to turn on.I wanted to make a small, battery operated lamp using those LED filaments. After trying out many circuits, I discovered a very simple circuit to light a filament LED with only one, 1.5V battery.

Step 1: Circuit Designs

I knew I should be able to use boost converter to boost the low voltage from a battery, however didn't think I can easily get the 70V. I have tried using specialized boost LED driver ICs with success, but those ICs need 3V or higher to operate.Next I experimented with a simple, two transistor Joule Thief (blocking oscillator) circuit. I did not have a transistor that can withstand 70V, so I used charge pump circuit to double the output of the Joule Thief. This way the transistor is exposed to only half the final output, or 35V.

This circuit worked, and I was happy with the performance for a while, but still wanted to reduce the component count. So I obtained a few transistors that can handle over 70V of voltage, and tried to see if I can light filament LED with just a Joule Thief. After some tweaking of the component values I found the circuit to work just as well as the charge pump assisted Joule Thief circuit!

Step 2: Final Circuit

So here is the final circuit. It is deceivingly simple, but works as well as the previous version with many more components.

The key is using transistors that can handle high enough voltage. I used KSP06, which has Vceo of 80V, just high enough for this project. Other specs such as hfe and Vbe is still good enough to operate at low supply voltage.

I tuned the components to not draw too much current, since the power source is AAA battery which is small. You can adjust R1, R2, as well as C1 to draw more current and light LED with more power if you want. For example R1: 470 ohm, R2: 47k ohm, and C1: 22pF would produce higher output, but the battery will drain much quicker.

Step 3: Final Touch

I designed a PCB to fit into a glass test tube.

It uses a single AAA battery (alkaline or NiMH) and draws about 50 mA.

I also added a tilt switch to turn on the LED when the unit is standing upright, and turn off when resting. I inserted the unit into the tube to make it look a bit like a vintage tube.

I put together the PCB and components as an easy to assemble kit - available at my website: https://www.theledart.com/products/jt-filament - if you are interested.

LED Contest 2017

Participated in the
LED Contest 2017

Be the First to Share

    Recommendations

    • Mason Jar Speed Challenge

      Mason Jar Speed Challenge
    • Bikes Challenge

      Bikes Challenge
    • Remix Contest

      Remix Contest

    12 Discussions

    0
    AnJo888
    AnJo888

    5 months ago

    Nice PCB/project.
    What about using a PET test tube (bottle preform)? It has a watertight cap and is unbreakable (great for outdoors activities)... Not sure about the heat, though...

    0
    ledartist
    ledartist

    Reply 5 months ago

    I don't think the heat would be a problem. The circuit doesn't produce much heat at all.

    0
    AnJo888
    AnJo888

    Reply 5 months ago

    Thanks for the answer.
    That's great... The tube format would be different, os course, probably wide enough to use a pair of AAA in parallel (longer duration), but would be, virtually, indestructible.

    0
    craftyjam
    craftyjam

    5 months ago

    is the inductor value crucial?

    0
    ledartist
    ledartist

    Reply 5 months ago

    No really. I tried values between 47uH to 100uH and see only a small difference. Values up to 470uH or so should work ok.

    0
    luemmel
    luemmel

    Question 2 years ago

    Very cool, is it possible to add a potentiometer to dimming it?

    0
    phil46
    phil46

    2 years ago

    Very cool. I love the addition of a tilt sensor to turn on/off, Why don't they do that simple trick with commercial lights to eliminate the manual on/off switch? Brilliant!

    0
    Victor805
    Victor805

    2 years ago

    Those look amazing. The PCBs are also really neat.

    I've checked your webpage and your other projects are equally as great.

    0
    ledartist
    ledartist

    Reply 2 years ago

    Well thank you very much!

    0
    Bongmaster
    Bongmaster

    2 years ago

    oh nice :) have you considered selling this as a kit? :)

    0
    radmans
    radmans

    2 years ago

    that's some very clever engineering and design! will you be sharing the pcb design also?