How to Convert Water into Fuel by Building a DIY Oxyhydrogen Generator

FeaturedContest Winner
Picture of How to Convert Water into Fuel by Building a DIY Oxyhydrogen Generator
Here's how to build a sexy looking generator that uses electricity to convert water into an extremely powerful fuel!  In this project, you'll learn how to build an OxyHydrogen generator from scratch.

Remove these adsRemove these ads by Signing Up

Step 1: What Is an OxyHydrogen Generator?

An oxyhydrogen generator, like this one, uses electricity from your car battery to split water into hydrogen and oxygen gasses.  (Electricity + 2H20 --> 2H2 + O2)  Together, these make a fuel that is much more powerful than gasoline, and the only emission released is—water!

Of course, to be a completely clean fuel, the electricity used to generate the gas needs to be from a clean source.  Solar, wind, or water power could be a few examples.  

This video shows step-by-step how to make one.  

NOTE: The amount of electrical energy required to make the gas is more than the energy you can obtain from it.  This is NOT an energy generator so much as it is an energy converter.  

Step 2: Getting Metal For The Generator Plates

Picture of Getting Metal For The Generator Plates
For this project, you're going to need some stainless steel and some ABS pipe fittings. I visited a local fabrication company, and not only did they have plenty of scrap metal to choose from, they were even willing to help me cut it to custom sizes. A job that would have taken me hours with a pair of tin snips and a hacksaw took only a matter of minutes with their equipment.

I used 20 gauge stainless steel, and with the help of their hydraulic punch, cut precise holes in the tops and bottoms of the plates. When finished, I had 12 plates measuring 3" x 6", 4 plates at 1-1/2" x 6", and three 1" connector bands that were 6", 4-1/2", and 3 1/4". A belt sander was used for smoothing down the jagged edges around the hole.

Step 3: Increasing The Plates Surface Area

Picture of Increasing The Plates Surface Area
Next I used 100 grit sandpaper to sand each of the plates diagonally. You can see the "X" pattern I sanded into both sides of the plates. This increases the surface area of the plate, and will assist in producing more gas.
1-40 of 314Next »

well i belived in this one man..perhaps i am already doing some of this here in the philippines,and already installed one to my van..

spatuladle5 days ago

That is super awesome and I am totally going to try it but I think you should add a detailed supply list. That would help a lot. Thanks

teknohawk6 days ago
So is this basically a fuel cell, such as the ones now found in some new cars? Anyway, this Instructable is awesome! Nice work!
ipad17 days ago

i think all the technology we used will exhaust any natural reserved at the end... but i agree for hho to save money for daily gas... and magnet motor/electric... or any perpetual motion... and so on solar panel, remember one thing... that the oil are nearly empty on our earth... for some country they did not have the oil...

Running the car on ethanol and using hho as additional economizer would give car the greenest footprint and best return on dolar spent. If you have a permit and distill your own ethanol it would mean all your fuel is renewable and no more gas pumps visits ever.
woodNfish2 years ago
If this were truly viable, everyone would be doing it, but I do have some prime swampland in Florida I'd like to sell you.'ve heard of hydrogen powered cars right? Well they use hydrogen and oxygen as fuel, and the only thing keeping them off the streets is the safety hazards of compressed hydrogen. Once a safety method is configured around that, this will be used in most likely every future car. "Electric cars" are simply a stepping off point, they won't last.
Yeah, I'm aware of them, but it takes more power to split the water than what you will get back from the hydrogen produced in addition to hydrogen being very unstable.
The biggest problem is not only safety issue, but the energy density of hydrogen or oxygen is so much ridiculously lower than fossil fuels. You will need to burn up a couple grams of Hydrogen and Oxygen to get the same energy from just burning a microgram of gasoline.
The difference being you can catch some rainwater in a cup.

Alternatively, go build an oil rig, drill a few thousand feet down with highly skilled workers and a ship-load of equipment, pump it into a holding tank, ship it to a refinery (hoping the captain isn't drunk or drugged up and runs aground killing an ecosystem and millions of wildlife), refine it, put it in a tanker and deliver it to a gas station where you use your own gas to get to and fill your tank up costing whatever the market feels like charging that day.

No thanks. I'll go for the water -> HHO any day. ;)
"No thanks. I'll go for the water -> HHO any day. ;)"
So , my question here is, if this became a viable option, and all cars, power stations and other bits and bobs ran on water, what are we going to do when the water runs out?
the thing is, the electricity is simply converted, the water doesn't actually burn.
No, what none of you seem to understand or willfully ignore is the fact that it takes more energy to separate out the hydrogen than you will ever get back by burning the hydrogen as an energy source. In other words you will spend $10 to get $5 in return. Does that seem like a smart thing to do?

And what you don't seem to be addressing is or willfully ignore is the fact gasoline has to be collected by some means, transported, and refined. The energy process to get oil into gasoline and into you car overall is still likely greater you can't just collect gasoline in the form we use it from anywhere.

On a closed-system, the energy absorbed by the HHO during electrolysis is equal to the amount of energy released during oxidation. The actual energy loss is at the electrolysis device. But, internal combustion engines use atmospheric gases energized by the sun 24/7. As HHO and Atmospheric Oxygen is mixed, there is a probability that the sun-energized oxygen is used to oxidize the hydrogen. That reaction, releases more power than what is needed to separate the hydrogen. Thus, HHO used in engines can release extra energy to run the alternator (to release more hydrogen) and enough energy to do work.

haunj EliakimG12 days ago

Energy efficiency in internal combustion engines does not change with the fuel used. Efficiency is all about heat gradients. You have to get rid of the heat, and that take energy. The more heat you generate, the more work has to be done to remove it. So it is self limiting. Most IC engine only get about 38% to 40%.

After you buy the solar panel, how much does the sunshine cost that will make $5 worth of hydrogen? That's right, zero.

Take the cost of a solar panel, about $1 per watt and divide it by the energy generated over the lifetime of the panel. So, 250 watts, costs $250 to purchase the panel. It produces about 1250 watt-hours per day on average. That's 1.25 kWh, at say 16 cents per kWh or about 20 cents, per day, times 365, times 25. $1825 of electricity for $250. Pretty good. Even when I get $912 worth of hydrogen, it's still good.

So $250 per kWh divided by 11,400 kWh = 2.2 cents per kWh. or perhaps 4.4 cents per kWh of the equivalent amount of hydrogen. Still great.

Solar panels are expensive and fragile to be installed in a vehicle. A simple alternator in existing engine system can do the work to sustain the HHO production while charging battery. Though, to start the system, it uses battery charge.

I think he was implying that building a solar powered fuel cell generator at home, then using that fuel in your vehicle would work. Not that you would generate your own fuel on the road.

Your alternator is powered by the fuel, at a low efficiency. This fuel is generated by electricity, at a low efficiency. So using your fuel to generate more fuel is so inefficient as to be a complete waste of time. The added work generated by adding load to the alternator would never come close to being recouped.

If the alternator makes electricity that fuels the HHO production, the alternator will have extra resistance, which will further tax the engine and burn more fuel. I agree that the HHO might make the combustion more efficient, but the electricity is not "free." It has a cost in gasoline as the alternator has more resistance. Energy cannot be created or destroyed, and it just moves around. Solar panels have been on vehicles for fifty years, including vehicles in space. Solar car races happen in multiple places every year. Anyhow I was not thinking of HHO for car engines in particular, but in general for a fuel for other purposes.

The 25 is the years of life in the solar panel.

And $250 per panel. it's late...

Explain it to us woodNfish. If you are using free water and free energy from a solar panel how does you $10 in $5 out theory work?


It takes 2 molecules of hydrogen and 1 molecule of oxygen to make 1 molecule of molecule of water

You have a cup holding 10 molecules of water.

You remove 2 molecules of hydrogen and 1 molecule of oxygen from your cup?

You're saying that your cup still holds 10 molecules of water?

The difference is that when gasoline or any other fossil fuel is burned it is destroyed forever. When Hydrogen is burned the result is water so it is a renewable cycle. You break water into hydrogen and oxygen. You burn the hydrogen and you get water again.

H'lo again chastjones,

Ok, so you're telling me that you'll end up with just as much water to create HHO as you started with after the HHO has burned? Alone, HHO is a combustible mix, but it will still come into contact with the atmosphere at some point during it's combustion. Since our atmosphere is a blend of oxygen and other gases. When HHO burns it also burns the nitrogen, releasing various oxides of nitrogen as well as what's produced with the various other gases in the atmosphere. I do not believe it to be possible to end up with the same amount of water to create HHO as you will after the combustion of that same HHO.

Assuming that no free hydrogen escapes to the atmosphere un-oxidized, then yes, you will end up with exactly the same number of water molecules as you started with. If some of your oxygen ends up reacting with carbon or nitrogen or some other element then free oxygen from the atmosphere will be required to completely oxidize the remaining hydrogen.

Hydrogen is one of the most reactive (if not the most reactive) elements. With the mixture HHO+atmospheric gases, it is improbable that free (not reacted) hydrogen escapes in the exhaust.

Max just keep sucking down all them Hydrocarbons in the atmosphere and coming from your tail pipe while the rest of us try to find another solution. Oil isn't forever. Trying to do math will hurt your head. Gas ,coal etc, do nothing to clean the air. Hydrogen does do that. You can argue your water this water that theory, but in the end it will just be water under the bridge.

I think some people are missing the actual benefits of hydrogen.

It is non-toxic. It readily combines with nearby molecules, so spills are never an issue as far as toxicity like petroleum. While it is bound up in other molecules, it is still the most abundant element in the universe. Which is why it is not pursued: it is not a commodity, and cannot be controlled as readily. Remember what happened to Nikola Tesla when JP Morgan found out he was researching to produce devices to broadcast electricity that people could "pick up" out of the atmosphere on an antennae. No more funding.

Hydrogen is portable as a storage mechanism, and can be transported to where it is needed, like electricity, but in tanks, or pipelines. It can be made with solar panels and water. The technology costs, but the source of energy in this case is free, minus the catalyst, which is negligible in cost.

It really is not a "fuel" in the sense of gasoline. it is not refined, or drilled out of the ground. it is not found in deposits, except in stars like our sun. And it does take more energy to make it than it puts out. That's OK, we do that every day. Only about 42.25% of the total energy we put into the US energy chute makes it to an end use.

But this HHO is recyclable, from water to HHO to water. Some of the oxygen is lost to nitrous oxides, but there is other oxygen in the atmosphere to combine with the hydrogen to make water again. The amount of NOx is small. With a sealed fuel cell it does not combine with the nitrogen in the atmosphere.

Hydrogen is an elegant energy carrier. We still need something to generate that electricity, but dams, wind generators, wood, and solar panels are renewable sources which can produce a portable fuel in HHO or hydrogen. Efficiency only plays a minor role.

Do a google search for "sea water to jet fuel." The US Navy has a prototype to create 100% synthetic, carbon-neutral, and recycleable hydro-carbon fuels. The infrastructure already exists for these fuels and it would be a monumental tax on the economy for a large scale fuel change over such as hydrogen fuel vehicles would require. Plus, it has the potential to solve that "rising sea levels" problem :D

'Swut I was gonna say. There ya go!

Billytz MichaelH54 months ago

Using regenerative braking, shock absorber generators, solar sun roofs and any other source of energy that could be put effectively on a car to power the Oxyhydrogen Generator rather than using fossil fuels would it not only lower the use of fossil fuel's and toxic batteries but if every car used it using water from the ocean could it lower the sea level as well as create fresh water for our rivers and streams like here in California?

The world is made up of 80% water. It has never dried up since the world developed (in a sense, after the "soupy-gunk" theory). Actually, water levels rose up by 1 ft. in the past year. Also, a comet that just went around the globe left a trail of ice in the atmosphere! Now since the world is being warmed by the sun, the ice will melt & fall to the earth (of course) causing floods deep enough to submerge Empire State Building, Eiffel tower, Petronas Towers, etc. So we need to harvest all the water need.

PS: A penny for your thoughts.

sea water wouldn't be ideal because the salt would corrode the engine to quickly. You would have to install a desalination unit which would use even more energy to produce the hydrogen. In a pinch at the beach I would say a gallon wouldn't harm it to much. Or even deep in the woods I would say urine would do.

As I understand it from scientific reasoners, the same drinking water that Marco Polo's aide carried in a leather pouch way back when - - is still circulating in today's eco-system. It simply moves away from arid places and ends up being somebodies flood somewhere.

that kind of doesn't make sense. If water is 2 parts hydrogen and 1 part oxygen, and you separate the two and then burn the hydrogen wouldn't you only have oxygen left over?

Well the word "burning" suggests that something is destroyed. This is true with a fossil fuel in that the process for "burning" or oxidizing permanently changes the fuel materiel. Remember, Oxygen must be present for anything the "burn", Hydrogen is no different. When hydrogen is burned it must combine with oxygen at a 2 to 1 ratio. This is because oxygen's valance is -2 so to fill that -2 shell it needs 2 electrons and since hydrogen has only 1 electron it take 2 hydrogen molecules. Rather than use the term "burn" it is more proper to use the term oxidation which more accurately describes a chemical reaction. So, using chemical or electrical electrolyses you liberate hydrogen and oxygen at exactly a 2 to 1 ration and when you oxidize hydrogen the reaction results in the release of heat energy (exothermic reaction) and the recombining of the hydrogen and oxygen in exactly the same ratio 2 to 1 which we know is just water. Neither gas is every destroyed in the process. The only way to destroy either of those two elements or any element for that matter is thru a nuclear reaction (fission or fusion).

law of conservation of matter: matter cannot be created nor destroyed, only displaced or converted. He is not saying that nothing is being used. Water is converted to its basic parts hydrogen and oxygen. They are volatile. Catalyzed with a spark a hydrogen breaks its H2 bond and forms with the oxygen forming oxygen as an exhaust. Also, that BS about "taking more energy to produce than it a generator can make" can be fixed by just putting an alternator on the engine to generate more electricity to replenish the battery/batteries. They also have these magical things called pulse width modulator that keeps a perfect stoich for this kind of reaction. This is a perfectly good idea, I have seen people run trucks on this idea. You will see this in the future.

1-40 of 314Next »