loading

Isolation transformer upgrade for old guitar amps

Featured
Picture of Isolation transformer upgrade for old guitar amps
_DSC5771_1.jpg
_DSC3539.jpg
Save your skin! Upgrade that scary old amp with an isolation transformer.

Quite a few old amplifiers (and radios) back in the day drew power by directly rectifying the household "mains" wiring. This is an inherently unsafe practice.

Most guitars connect the bridge and strings to the ground (shield) wire on the guitar cord, essentially using the player as a "noise shield." In transformer-less amps, the Neutral wire of the mains is often used as the "ground." With a two-prong cord, Neutral and Hot can be switched (which could place the amp's ground on the Hot wire!) In other words, playing a guitar amp without an isolating transformer could be like sticking a fork in a wall outlet.

Isolation transformers limit the amount of current that can be supplied to the amp (and consequently to the guitar player) if any shock hazards arise, and eliminate possible "hot" ground issues.

In addition, we'll install a three-prong cord, so the amp has a proper earth ground. And a fuse, too. The earth ground and fuse help to maintain a sane ground reference, and protection from shorts.

And we'll incorporate the changes on a small "module," so as to change the original as little as possible. If someone is crazy enough to revert to the original setup...they can do that.

This mod works with radios, too. In fact, many of these amps were called "radio tube" amps, or "AC/DC amps"--like their radio counterparts, a transformer-less amp could be plugged directly into a DC or battery power supply without modification. A decently-sized bank of batteries were required (over 100V), but that was once commonplace.
 
Remove these adsRemove these ads by Signing Up

Step 1: ZZZAAAPPPP! It's the Safety Disclaimer!

Picture of ZZZAAAPPPP! It's the Safety Disclaimer!
I'm copying this from my own instructable about tube amp rebuilding :

DISCHARGE THOSE POWER FILTER CAPACITORS!!!!!

Seriously. Do this EVERY TIME you work on the amp. If you don't, DO NOT complain if you loose the use of your hand. DO NOT come back and haunt me if you die....

The power 'filter' caps can store fatal amounts of electrical current, and are sometimes termed "reservoir" caps. The caps are connected near the rectifier and are part of the power supply, and aid in converting AC to DC. In fact, they are a standard component in any power supply.

If you're completely lost, and don't understand this , DON'T MODIFY YOUR AMP . You haven't enough knowledge to work on high voltage/current circuits safely...

There are several ways to discharge caps, but here's the easiest:

FIRST, UNPLUG THE AMP! (But that doesn't make it safe....)

THEN,

-- Jumper the positive (+) lead of each large cap to GND for several seconds. A jumper with a built-in resistor (10K or so) will help prevent sparks here... If your jumper has a resistor, leave it connected for at least 30 seconds before you touch anything.

-- OR short the caps with a screwdriver. Lay the shaft on the chassis, then bridge to the positive (+) lead of the cap. Be sure the screwdriver handle is insulated (if it's painted, it might not be.)

This may result in a spark... Obviously, your flesh can act as a jumper also (that is NOT a challenge.)

Step 2: So, does MY amp need one?

Picture of So, does MY amp need one?
chassis2.jpg
First, mains-rectified amps were generally small output, 1-5 watts. Manufacturers usually didn't skimp on the larger amps.

If your amp has only one transformer (the output transformer) the answer is YES, you need one. If your amp has two transformers, odds are you don't need an isolation transformer.

Power transformers, the type that's missing from these unfortunate amps, are the largest transformers. They also tend to get warm, so 19 out of 20 times they'll be mounted on the outside of the chassis. The lack of one will be obvious.

Output transformers (and no vintage tube amp can be without one) however are smaller, and might be mounted in various ways, some of which are hard to see. They could be on the outside of the chassis, yes--but also under the chassis, or on the speaker itself. But rest assured--there will be an output transformer somewhere.

But wait--it's not that simple. Some amps isolated the signal path from the mains, but not the filament voltage. If equipped with a three-prong cord, these amps are somewhat safer, as they do offer isolation in most cases.

One sure-fire way to know if your amp lacks isolation is to examine the tubes. American tubes are prefixed with the filament voltage (12ax7 has a 12V filament, 6V6 has a 6V filament, etc.) The AC/DC circuits were designed to run all the filaments in series on a 110V supply. They therefore have high prefixes:

One common set: 50C5, 35W4, 12AU6

...which together equals 97V, so a small resistor was also added in series to drop the 110V voltage an additional 12 to 15V. It should be immediately evident that this was a cheaper way to build an amp. And many were built.

So, from a safely perspective--does your amp need isolation? YES.

Step 3: The amp

Picture of The amp
_DSC3539.jpg
I picked up this funky little Gregory Mark I amp from Craigslist for ~$25. Gregory put date stamps on their cabinets, and this one dates to March 25, 1955. So this little guy is over 50 years old!

Paul Marossy has a great website dedicated to Gregory amps (in fact, the photos of the Mark I example on his site are mine.)

It's a typical low-wattage practice amp of the time. No tone control, only volume. Probably 1-2 watts of output power. It's great "living room" or recording amp.

Among the mods I've already done was adding a 1/4" jack for the speaker output. I just unplug the small speaker, and run the amp into one of my 4 ohm cabinets. The amp is easily twice as loud through a 2 X 12 cab... (with loads of bass, too.)

But it's also a typical non-isolated amp, and that safety issue need to be addressed...

Step 4: Parts and tools...

Picture of Parts and tools...
_DSC5894.JPG
image0012.jpg
Tools

Soldering iron and solder
Drill and bits
Stepped drill bit (for large holes--fuse holder)
Screw drivers, etc.

Parts

-- Isolation transformer
-- Fuse holder and fuse
-- Scrap wood
-- Heat-shrink tubing
-- Three-prong cord (scavenged from an old computer)
-- Line wire, misc wire, wood screws, etc.
-- Metal plate for mounting fuse holder
-- Strain-relief for the cord

Step 5: Illustrating the issues via schematics

Picture of Illustrating the issues via schematics

Here's a schematic for the amp (complements of Paul Marossy's website.)

It's very typical of this amp type. Note the following:

-- the lack of a power transformer.
-- no fuse in the circuit.
-- the 35w4 diode is directly connected to the mains.
-- the GNDs are directly connected to the mains (this one doesn't even have the protection of a "death cap!")
-- the tube filaments are all connected in series, directly to the mains.

How do we fix it?

-- add an isolation transformer
-- add a fuse
-- reroute the ON/OFF switch
-- add a three-prong cord, and a proper earth ground

One issue will be dealt with later: using an iso transformer with a half-wave rectification circuit.

Step 6: Choosing an isolation transformer

Picture of Choosing an isolation transformer
Unlike many power transformers, isolation transformers have a 1:1 voltage ratio. The output voltage is (for practical purposes) identical to the input voltage. They serve only to "isolate" the device from the high-current potential of the mains. DON'T use an auto-transformer--they don't isolate.

Transformers also have a Volt-Ampere or  VA rating. VA is roughly analogous to wattage (remember, wattage = voltage * amperage, or wattage = V * A.) for resistive circuits, but not for inductive loads. For inductive load, you can "guesstimate" wattage capacity = VA * 0.7, or the wattage of an inductive load is ~70% of the VA.

Wiki page on the Volt-Ampere.

So the first question is:
What is the total power consumption of the amplifier?

I.E., NOT the output wattage, it's only a fraction of the total wattage it takes to run small amps.

Most amplifiers have a power consumption rating on the back. My Gregory doesn't, but it's safe to compare it to other three-tube amps. My little Kay amp consumes 28 watts. My Danelectro DM-10 (4 tubes) is closer to 40 watts.

It's a safe guess that most three-tube amps don't consume anywhere near 40 watts of power, and probably not 30 watts. Since more than half the load of a small amp is resistive (the tube filaments), and 70% of 50VA is 35 watts, then a 50 VA rated transformer should be fine.

So we're going with a Triad N68-X isolation transformer, with a 50 VA rating. Good stuff.

The N-68X is inexpensive, and can be purchased at various online electronics stores. One example:
Allied Electronics (for $11.41 USD.)

Mouser has it, and Digikey probably does, too.

If your amp requires more than 50 VA, Triad also makes larger transformers. Of course, isolation transformers from other manufacturers will work just as well...

Step 7: The Plan

Picture of The Plan
_DSC5356.JPG
Here's where we decide how to implement the changes.

Wiring the N-68X iso transformer

Primary--

The N-68X can be used with either 120V or 240V AC systems. 

US 120V

For 120V, place the two primary coils in parallel.

Tie these colors together, and connect to the mains (through the switch, etc.):

-- Black and Red/Black
-- Yellow/Black and Green/Black

Euro 240V

For 220-240V, wire the N-68X primary coils in series:

220V / 240V mains-- Black and Black/Green .
Connect Yellow/Black and Red/Black together.

Secondary--

Use only the two Red secondary wires. The white wire is the shield. Connect it to the chassis (or earth ground) if it's mounted there, or if you experience any noise.


Re-routing the switch

The original ON/OFF switch is mounted on the chassis panel. To keep the switching truly functional, we'll have to route it differently.

We could leave the switch as-is, but then the primary of the isolation transformer would be in a permanently ON condition. Only unplugging the cord would cut the power to the trannie. The switch would still operate the amp, but there would still be some current draw. That's wasteful and "bad form."

To use the original switch, a simple two-conductor wire can be attached, and run down to make/break the incoming AC connection to the isolation transformer.


Connect the earth ground

With the three-prong cord addition, a true earth ground is available.

Attach a wire from the center prong (should be Green, but verify) of the plug and connect it to the chassis.

Optionally, the transformer casing can also be grounded.


Power -- connecting the isolated AC

OK, here's where things get a little "iffy."

The Simple Way:

The transformer's secondary can be connected directly where the old power connections attach. In this case

Wire 1 ) to the rectifier plate, and the series filaments
Wire 2 ) to the chassis ground

The order of the secondary wires doesn't matter--the AC from the transformer is isolated, so there's no Hot or Neutral side. They are both Red for a reason...

The Correct way:

Read the next Step--it deals in depth with half-wave rectification...

Step 8: Fixing the half-wave rectifier problem

But wait--the 35W4 tube is only a single diode , so the rectification is half-wave , rather than full-wave.

Is that bad?

Well, yes. As the name implies, half-wave rectification only uses one half of the AC waveform, and blocks the other half. Power transformers are really designed to be symmetrically loaded. The flux field collapses as one peak falls, and the transformer expects an equal load--and an equal amount of magnetic force from the complementary peak.  Without a load on half the cycle, the collapse of the field causes the transformer core to become saturated much more quickly than normal. That puts a "standing" DC voltage on the transformer. The N-68X, being a small transformer, isn't designed to handle this.

Half-wave rectification isn't quite as much a big deal on your household "mains." The current draw is small compared to the available current. The resulting asymmetry only changes the total waveform fractionally. But even that could be enough to create noise in other devices...

When I first installed it, I tried to use the N-68X with the circuit, as-is. But it immediately became obvious that the transformer became too hot, considering a current draw less than 30 watts.

Solving the problem

A larger isolation transformer might nullify the problem, but when using the N68X the best solution is to rectify twice -- once with a solid-state bridge rectifier to shift the negative voltage over to positive; then rectify again with the 35W4 tube. That will eliminate our asymmetry, since there will no longer be any negative voltages for the tube rectifier to block.

See the fifth illustration for this "combination" technique... Note that the output of the combination is full-wave , despite passing through a single diode rectifier after the bridge. So there's more current potential for the amp circuitry than before. Plus it's probably quieter, too.

And note that the peak voltages of the tube rectifier (diode) are lower than the solid-state bridge. Note also that half-wave rectification need not be done with a tube diode--a solid-state diode functions just as "well" for this application.

Where to insert the SS bridge

There are two good options:

Option A ) between the isolation transformer and the entire amp circuit. Since rectified AC (pulse DC) holds the same potential as regular RMS AC, the total voltage doesn't change.

If the filaments were fed solid-state rectified and filtered DC the voltage would be too high, because the total voltage would approach the peak voltage, rather than being an average. And the filaments would fail. However, the filtering caps come after the tube rectifier, so that's not a problem.

In addition, the SS rectifier could be mounted back on the iso module. Since I didn't do that initially, I placed it on the chassis.

Option B ) after the filaments, and feed the tube rectifier only (only the DC parts of the amp cause asymmetry.) This would work fine. But it also requires a bit more rewiring.

I chose the first option...

Why include the tube rectifier at all?

The bridge produces all the rectified current the amp needs...why keep the 35W4?

-- Leaving the 35W4 will keep the peak DC voltages at a lower level than the more efficient SS bridge by itself. The 50C5 power tube wasn't designed for plate voltages much higher 120V. Since AC peak voltage is higher than it's RMS value, rectification circuits tend to output a higher DC voltage (theoretically 1.414 times higher than the RMS.) But as stated previously, tube diodes are less efficient.

-- All the tube filaments are still connected in series, so removing the 35W4 would have created a new problem--how to drop the voltage on the series string of filaments (the remaining two tubes) by an additional 35V.

Leaving the 35W4 tube in place solves both these issues.

Necessity

Is all this absolutely necessary? Well, with a large enough Isolation transformer, maybe not.

A 100 or 150VA rated transformer could safely deal with halfwave issues for a <50 watt amp, I'd say.

Step 9: Option C (busting the hum)

Picture of Option C (busting the hum)
OK, it's a year later, and then some...

These changes do seem to introduce hum to some AC/DC tube circuits. For a few reasons: SS rectifiers are more efficient, the filtration is a little lacking, and fullwave rectification shifts the PS wave peaks from 60Hz to 120Hz.

So in the quest for a hum-free amp, I've modified the circuit somewhat. This has made the little Gregory amp almost totally free of nasty hum. Your mileage may vary--each amp is a little different.

NOTE about this section:
There's cost for converting to higher voltage DC filaments--increased power consumption. The power draw for the 120V AC filaments is 18 watts; 25.2 watts for 168V DC filaments. Keep that in mind. Note also that this mod may raise the plate voltage for the 50C5 output pentode somewhat higher than the recommended voltage...this has worked fine for me, but YMMV.


Option C

This option Inserts another filter cap after the SS rectifier. It's a little odd, as the additional filter cap is placed between the two rectifiers. Nothing technically wrong here, just unusual...(as are two rectifiers, but we know that works.) We're just feeding the second rectifier a current source that's less...wavy .

However, Option C introduces a complication: With even a moderate filter cap, the filament voltage is much closer to DC than the original AC.

That's good, right? DC is quieter. Yeah, but the DC voltage resulting from rectifying and filtering AC is closer to the peak AC voltage, and can't be treated as an "average"... So the new DC voltage is higher--TOO high, in fact. The old AC-to-DC formula is in play...the DC voltage is approx 1.4 times the AC RMS, approx 168V. This would surely burn out the filaments.


Taming the Higher Filament Voltage

But there's already a series resistor inserted with the three filaments to drop the voltage--for line AC (115-120V). We just need to increase that resistance so it can handle the higher voltage.

So how do we figure the new resistance value for Rv? A few facts...

-- the three tubes (12AU6, 35W4, 50C5) drop a total of 97 volts (12 + 35 + 50 = 97).
-- each tube draws 150 mA (0.150 Amps ). That's important.
-- the stock Rv value is 160 ohms (for 120V).
-- the new filament supply voltage is 168V .

Hmmm, each tube draws 150 mA. AaaHa! Current is equal for all components in a series circuit. So the current draw of Rv must match.

Time for good ol' Ohm's Law (R = E / I, or resistance = voltage / current). Let's check the original value:

120 - 97 = 23 extra volts to drop.

To achieve the same current draw for Rv: 23 / .150 = 153 ohms. Good! That's almost spot-on to the 160 ohm spec'ed value.


The New Rv Value

Estimated DC voltage for the filaments: 120 * 1.4 = 168V
168 - 97 = 71 volts to drop.

71 / .150 = 473 ohms. That's SO close to a standard value...

470 ohms is the new Rv resistor value. Rv is dissipating 10.5 watts, 15 watter is required.

This has been tested, and worked perfectly--the very first time (yeah!)

Yes, this ups the current draw (total wattage) of the amp, without increasing the output power. OK, not quite true--the output pentode now has a higher plate voltage, so the output is slightly increased. The higher filament voltage is drawing about 7 additional watts. The iso transformer does get a little hotter.

The New Filter Cap

Pick a reasonable value here. I used 22uF / 250V, but upped that to 100uF / 250V. It works just fine, and obviously the 100 uF cap is a bit quieter.


Other Anti-Hum Mods

I've moved the initial SS rectifier ground directly to the bolt that holds the rectifier to the chassis. Probably helps a bit. The first (filament) filter cap is also grounded here.

Also moved the isolation transformer a little farther away from the speaker voice coil. It's easy to experiment with this...just clamp the transformer "module" in different spots and test. Didn't have much effect, but it can't hurt.

Don't forget to clean and reseat input jacks, especially if they are grounded directly to the chassis. That's a common source of hum.

Step 10: Building an "Isolation Module"

Picture of Building an
_DSC5367.JPG
_DSC5370.JPG
_DSC5381.JPG
_DSC5391.JPG
isolation.jpg
I built it as a small self-contained module, mounted on a block of wood.

There are other ways, of course. All the components can be mounted directly on the cabinet itself. The cab plywood is rather thin for this amp, so best to use the wooden block for a base.

Make the module base

A scrap piece of poplar 1x2 was used, cut to a length that easily fit all the components.

Add a fuse holder

The fuse holder is a pretty standard type. It's mounted in a small piece of galvanized metal plate (originally a truss plate.) Metal plate is definitely the best choice for securing this kind of fuse holder device. Thin plywood wouldn't be secure.

A stepped drill bit was used to drill the hole for the fuse holder. Wood screws were used to attach the plate to the base.

Mount the transformer

This is straight-forward. The N68-X transformer is attached with a pair of wood screws.

Make internal connections

Wire the module using the schematic / wiring diagram on Step 7. You can find it below.

Some pointers:

-- The switch and fuse should be on the Hot "mains" wire.
-- When routing the switch wire, avoid the signal path where ever possible.
-- Connect the transformer primary wires as noted. This is US, 120V wiring. Euro wiring will be different (and is explained on Step 7.)
-- I used "wire nuts" to connect the wires, but soldering is more secure. Once I'm satisfied with the setup, I'll replace the nuts with solder, and cover with heat-shrink tubing.

Add some strain-relief for the cord

I used plastic wire channels to fix the cord in place. Electrical cords must have some strain-relief, or flexing will quickly lead to disconnections or shorts.

Step 11: Installation

Ok, now to hook everything up...

Fix the module in place

Yep. That means attaching the module somewhere inside the cabinet.  I used wood screws; whatever is adequate will work. Mounting it some distance from the chassis is fine, and might be advantageous in some circumstances.


Attaching the earth ground (from the three-prong plug & cord)

An important safety feature in any amp is a valid external earth ground. This helps protect the amp (and the player) in a very simple way:

Should any parts fail, or any connections loosen and cause a short circuit, the ground wire provides a "safe" current path, while ensuring that the current flow from a short will also blow the fuse. If the fuse blows, you know there's a problem to fix. And you won't be using potentially dangerous equipment.

The center prong wire from the three-prong cord is the earth ground. In the US, this should be the green wire. Test it anyway, to be sure.

Connect it directly to the chassis. It does not go through the isolation transformer.

Connect the Power switch

Route a two-conductor wire from the switch on the front panel, down to the incoming AC line. Line cord, like the type used in lamps or extension cords works fine. Buy it by the foot at hardware and home improvement stores (Home Depot, Lowes, etc.)

Drill a hole through the chassis if necessary (I did.) Install a rubber grommet in hole, to prevent the wire from rubbing across the chassis, a creating a short circuit.

Route the wire away from the signal path, if possible.

Connect the transformer secondary to the amp

As discussed in the "half-wave" step, there are several way to do so.

But in any case, a double-conductor wire should be connected to the RED secondary wires on the isolation transformer. The wire can then be fed through the chassis using the original power cord entry hole.

Add the solid-state bridge rectifier

This is discussed in depth in Step 8, and schematics are included. Check the photo below for a wiring example.

A bolt-on type of rectifier was used. A new hole was drilled in chassis to accept the mounting bolt.

Once soldered in place, heat-shrink tubing was added.

1-40 of 70Next »

Today at 10:55 AM

Hello.

I read your article about rectifiers with great interest and wonder if you can solve a similar problem.

I own a vintage radio (see link below including schematic) which includes two half-wave rectifier tubes--namely the 2X3--long since obsolete and having no direct substitutes.

http://www.radiomuseum.org/r/deforest_prescott_ch_7d832.html

The original 2X3s in the radio eventually burned out, so the closest tubes I found with similar characteristics were 2W3s which worked fine up until recently when they began performing erratically, going intermittently cold and then hot--clearly malfunctioning.


The 2W3s tested okay on my vintage Jackson 648 Dynamic tester, however such tests can be deceiving. When they work at all, these all-metal 2W3 tubes run very hot inside the radio--virtually untouchable--although apparently this is common with rectifiers.


Specs: 2X3 2.5 volts 2 amps 4X base diagram
2W3 2.5 volts 1.5 amps 4X base diagram


Seeking a better solution, when I typed "solid state rectifier tube replacement" into the Google Image search bar I saw a variety of solid state options made by Sovtek and others, so I am wondering if you are aware of an existing solid state replacement for the 2X3 or if Sovtek or another manufacturer would actually need to "clone" this obsolete product--if indeed that would be economically practical on their part, although since such rectifiers are of a pretty basic design, perhaps my idea has merit after all.

Yes, a few online tube dealers do have some old stock 2X3 tubes for sale but they are expensive, unlikely to be available in stock forever due to their obsolescence, and in the long run such tubes would have a relatively short life span whereas a solid state replacement would presumably solve that issue forever.


Your thoughts on this and potential solutions would be very much appreciated.

Steve

gmoon (author)  Newslogger44.1 month ago

Hi Newslogger44--sorry for the delay, I didn't check my I'bles account for a couple days.

RE: solid-state replacements for rectifiers, I'm aware that they exist. The trouble with using one in this (my) application, is that for "radio tube" amplifiers, the tube filaments are all wired in series, directly on the mains AC. A plug-in SS replacement won't work, unless it has a resistive element (with the same current draw, at the correct voltage) for the filament pins.

Most high-end tube amps don't do that, they have a separate filament supply (usually 5 or 6 volts secondary on the power transformer) dedicated only to the rectifier tube. Since no other components are wired in series with the rectifier filament, those SS replacements simply forego the filament supply altogether--which in fact makes the PT run a little cooler.

This is actually discussed within the I'ble, mostly in the sections about the series AC filament...

It it possible to make your own solid state replacement--they aren't very complex. If you search for them, I'll bet you find a schematic. If I recall, they are generally just SS rectifiers with a current-limiting resistor in series to mimic "sag."

Otherwise, if you're using the 2A version in place of the 1.5A one, there's a good chance you'll damage the amp...

nathangill3 months ago

Thanks for this post!
Could you share what model/value rectifier you used?

gmoon (author)  nathangill3 months ago

Sorry, I missed this... For the bridge? For this proj I think it's a pretty standard 1A 400V rectifier.

chadsmiff gmoon2 months ago

Where would I find a 1A 400V bridge rectifier? The closest I've found is a 3A 400V from Antique Electronic Supply https://www.tubesandmore.com/products/P-QBR-34

Thanks, this is a great post btw.

gmoon (author)  chadsmiff2 months ago

The 3A would work just fine. Otherwise, you can fabricate a bridge rectifier with four diodes (1N4004 or 1N4007)...

Thanks!

RodO1 made it!6 months ago

Thanks Doug!!

I have a Canadian made Pine/Pepco 801 ARC amp with 50C5, 35W4, 12AX7.

I have followed this excellent instructable and it works perfectly!

Barely any perceptible hum.

I'll upload the redrawn schematic for the original and the modified.

gmoon (author)  RodO15 months ago

Awesome, glad the ible helped!

rinomazzucco10 months ago

Doug,

I've read your brilliant article about the iso transformer upgrade but I'm a bit confused about applying the concepts to the new Kay 703C amp I bought off of ebay recently... Attached is the schemo... it appears that only a part of the filaments are not isolated...?!?! Am I getting this right? Any particular guidelines to apply the concepts and not end up frying some component or myself in the process? I'm not sure how to go about this especially relative to rectifying this circuit adequately... I know a fair bit about electronics but not as much as you that's clear...Thanks.

Ian W.

gmoon (author)  Alphascorpius671 year ago

That is one really strange schematic... There isn't any isolation for most of that amp.

The only thing that's isolated on that amp is the 18V filament for the preamp pentode. The only purpose I can think of for that transformer is that the preamp tube filaments draw a different amount of current than the other tubes, so they couldn't be used in series. The preamp voltage is still AC, even with the iso trans, so it doesn't have a DC supply for the preamp filament (which would be one reason to separate that heater from the rest). The tube filament voltages look perfect to run in series, so it's puzzling unless there are differing current requirements.

The wall AC runs in series through the iso transformer primary winding, the power tube, a voltage dropping resistor (R9) and half of the rectifier filament--where it splits off through the other half of the rectifier filament, and then becomes the B+ for both the signal tubes. Meaning the B+ voltage is wired in series with half of the rect heater, so they figured the current draw of the plates and sundry would balance with the draw of the half filament...

Very weird. Maybe the current draws for all the tubes are different, and they creatively figured a way with the transformer and half of one filament to make it work. Sometimes products are designed around an existing stock of tubes (like they got a truckload cheap).

I'd add an isolation transformer for the whole thing, right at the cord. It's too complicated and weird to change the rectification. Get a bigger iso transformer if you're worried about the half wave issue...

Doug, I recently picked up a Gregory Mark I for $10 at an estate sale and I've just started to dig into it. Mine is slightly different from yours in that it has a tone control and inputs for three (yes three!!!) instruments, and the construction is slightly different. The output transformer, for one, is mounted to the speaker, and mine has a different filter cap than yours. I don't have your education on these matters, but I believe it is called a multi-section tubular electrolytic capacitor. Do you have any advice on replacing these. Are new ones still made, or do I replace this with three separate capacitors that match the three respective sections? Also, do you think that this capacitor indicates that my amp is even older than yours (I could fine no date of construction)? I've attached some photos, and thanks in advance.
better chassis.JPGcapacitor.JPGChassis mark I.JPGfront mark I.JPG
gmoon (author)  northsidesoxfan1 year ago
Hey, that's pretty cool. Funny that the output wires are routed through a hole that was clearly meant for a tube, at one time (do you think it every held one?)

My Mark one originally had a multi-cap, but I replaced that with individual caps. Yeah, you can certainly buy them still, although that particular style will be hard to find (with wires instead of posts, and mounted thusly). You can try Antique electronic supply, for one. What they sell will be new, too. Ebay would have "vintage" caps like it, but I wouldn't bet on them being viable...

Some radio restorers like to hollow out the old multicaps and replace the guts with new electrolytics, which are quite small. I'm not sure that a Gregory Mark I will ever be a collectable, so it's up to you if you think it's worth the effort. Good luck!
Thanks for your response.

In regards to the multisection capacitor, I was going to replace it with individual caps, but I found a guy who will make a replica for $17 (http://hayseedhamfest.com/) plus $3 shipping, so I decided spend the extra few dollars and take the path of least resistance.

I found the empty tube slot funny as well, but I don't think this amp never had an extra tube. My guess is that to save production costs they used the same chassis for several different amps.

Where did you find a production date for yours? I don't see anything on mine.

In regards to value, I know it's not really worth anything. I bought it for $10 and I may spend more on parts than it's worth. I'm just using it as an educational tool and an entertaining hobby. If I get it working fairly well I'll probably swap out the speaker, so keeping it "original" is not an issue.

When I get to installing the isolation transformer, I may have a few more questions for you. Thanks.
gmoon (author)  northsidesoxfan1 year ago
The production date was stamped on the wooden frame of the cabinet.

I'm sure you're right about the chassis... I think they changed design on these when a new truckload of surplus parts came available...
Two more things.

1) Please excuse my typo.  I meant that I could not "find" a date of construction, not "fine" a day of construction.

2) I should have clarified that the amp has a sever hum, which leads me to believe that the capacitors should be the first thing to go.
slor2 years ago
For more than a few seconds, yes. Someone on a forum suggested wiring that particular transformer "backwards":

www.diyaudio.com/forums/tubes-valves/235515-4tube-philco-amp-project.html
gmoon (author)  slor2 years ago
I found some info on your amp, and it's pretty similar--three tubes, nothing unusual. It should work.

If you're using "option A" you've added a fullwave rectifier, but not for the filaments. You should be well within the limits of the iso transformer. The Gregory is currently running the filaments on DC also, but it still works fine (and consumes more power with the DC heaters). The transformer gets a little hot, but not as hot as some of my vintage amp PTs.

I've never tried the "backwards wired" approach. It appears this lowers the voltage, and consequently the current draw. At a lower voltage it's probably more distorted--OK for guitar, but maybe not for a reverb driver...
slor2 years ago
Thanks so much for posting this! I implemented this on a surplus Graymark 509 to run the plate reverb in my studio. But even with "Option A" in place, the transformer runs hotter than I'd like. Any thoughts?
gmoon (author)  slor2 years ago
Sure, glad it helped.

How hot is hot? Is it too hot to touch?
Great Article!! I have a Gregory Mark V. Simiar to yours, but it has a tone knob and tremelo. Tubes are 50C5, 35W4, 12AU6 and 12AV6 (for the tremelo). I can easily install an isolation transformer, fuse and grounded AC cord. However, I need to figure out which transformer and fuse value. If I used a larger isolation transformer, could I keep the tube rectifier? Which fuse value would be best?
gmoon (author)  mysistersdiary3 years ago

Thanks! I upgraded the speaker on this one, and I use it all the time...

I think you'd do fine with a 100 VA transformer. A 0.5 amp fuse should work.
haz_mat4 years ago
Maybe I missed it, but what should the fuse be rated at?
gmoon (author)  haz_mat4 years ago
Depends on the amp. Use the lowest rated fuse that works.

To ballpark: amperage = watts / volts. A 40 watt amp (including 5% added for the iso transformer) is 40/120 = .333 amps. Might have to use a 0.5 amp fuse.

If the setup works witha .35A or a .25A fuse, then that's even better...
corbin5694 years ago
My amp uses 50eh5 tubes(pair) with no tube rectifier, only a single ss diode. Would I only need to replace it with bridge rectifier, or do something else??? thanks.
gmoon (author)  corbin5694 years ago
Since the SS diode doesn't have a filament, you can replace it completely with the bridge. No need to keep it there...
corbin569 gmoon4 years ago
Ok ,thanks for te help !!!
gmoon (author)  corbin5694 years ago
Sure!

Just make sure the new ground comes from the bridge, not from the old wiring setup, which is the "neutral" side of the mains plug...
Dumb question maybe, but isn't a full wave rectifier enough isolation?

If you were to run the power through the rectifier first, and feed the filaments DC with a series resistor to drop the extra voltage, do you need the extra bulk and expense of the isolation transformer?
gmoon (author)  TechnoWombat4 years ago
Just for the heck, let's compare the numbers:

-- Ohms law-- current = watts / voltage.
-- Rectified voltage is about 170 V (120 * 1.4)
-- This isolation transformer limits at 50 watts (50 VA, but close enough).
-- a 1n4007 diode bridge has a 1A limit (but it may take time to fail).

Iso transformer draw: 50 watts / 170V = 0.294 Amp max
1N4007 draw: 1 Amp max
Other rectifying diodes may draw 3 amps or more...
But the purpose of an isolation transformer isn't to limit current using core saturation, it's to dereference the ground using inductive coupling, like you would use optoisolators in a MIDI interface. If you are earth grounded, and grab the live (hot) side of an isolated supply you should be OK, as the supply has it's own isolated ground, not referenced to earth ground

The issue is, that as we then earth (or ground) the chassis anyway, and the circuit ground is generally tied to that, we have just re-referenced our de-referenced ground anyway, which makes me wonder why the heck I'm using an isolation transformer.

According to the math above, if I were to use a 200VA transformer, the amp is suddenly dangerous again? There's got to be something we're missing here?

gmoon (author)  TechnoWombat4 years ago
You're not missing anything, but limiting current IS one of the reasons to use an iso transformer.

Don't get me wrong--enough current can pass through a 50VA iso transformer to do considerable damage. It's hardly a harmless amount of current. But there's a LOT more potential current in the mains...with or without a rectifier.

When people are often partly insulated by clothing, shoes, etc., it can make a huge difference.

Earth and neutral are NOT interchangeable. They are usually close in relative potential, but they are not the same. In fact, I bet that's one of the 'ground faults' that ELCBs, GFIs and RCDs trigger on...

Where are you planning on getting the earth reference for the chassis if an earth / neutral connection is by definition a "fault?" (neutral being connected to ground through a full-wave bridge rectifier, or directly with a half-wave rectifier.)

Also those devices also introduce a level of complexity, with their own set of faults-- they can fail themselves. Simply wiring one up incorrectly can render it useless.

Personally, I would never depend on one alone--especially not when I'm holding the signal ground in my hand. I might use a GFI together with a transformer, though.

Not to mention that you're assuming that all wall sockets are wired correctly... And that other people's equipment is safely wired and referenced.

Nothing is set in stone...witness newer switching power supplies which forgo isolation (although all have sophisticated current sensing circuitry). But how many of those power supplies are used in applications where the the user is literally grabbing on to one pole of high voltage?
gmoon (author)  TechnoWombat4 years ago
Not a dumb question at all... I wouldn't depend on a rectifier (diodes) to limit current safely.

Transformers limit current by their nature. If you try to pull too much current, the core saturates and that's the limit.

Diodes have a current / voltage limit, but they can exceed that for a time before they fail. Too long a time to protect from electrocution. Diodes can also fail "closed," which would limit NO current. Could still result in a "hot" chassis in the worst case, if only one or two diodes in a rectifier fail closed (and other safety changes weren't done).

Of course, both can fail "closed"...transformers can short internally. And that's why we change the other stuff... Like adding the fuse (and the earth ground). But a transformer short would prevent any current passing beyond that short.

A fuse can't react quick enough to prevent a serious (fatal) shock. It's there to prevent damage to the amp and act as a fault indicator.
Ah, OK, my thought was to add the earth connection, unit is already fused, and have the AC to the power switch, and then, straight to the rectifier.

Maybe I should drop in an ELCB prior to the fuse?
gmoon (author)  TechnoWombat4 years ago
I'm not certain about the safety and efficacy of ELCBs replacing transformers entirely. You'll have to research that on your own.

Most of the amps that are missing power transformers are pretty small, so a small iso transformer isn't very expensive... This 50VA model was only about $12 USD. I think that's pretty reasonable.
mjsdiy4 years ago
I have an amp with the same 3 tube configuration (the only I.D. anywhere on it is "Model 5000" on the front panel). I'm a tube noobie, but I want to be safe, so I installed the iso transformer and 3-prong cord with true earth ground. Now I have a 60 cycle hum that was not there before. Any ideas? Oh, and any help identifying the amp would be appreciated as well. Thanks for a great walk-through with loads of great info. mjs
IMG_0569.jpgIMG_0568.jpgIMG_0572.JPGIMG_0573.JPG
gmoon (author)  mjsdiy4 years ago
Have you played with the AC wire routing at all? Maybe that has an effect. And has the amp been recapped lately? Nice amp, BTW. It REALLY looks similar to Gregory amps. Maybe it is one, but missing the badge on the baffle.
mjsdiy gmoon4 years ago
Rerouted the AC wires with no change. Powered up the amp and poked around with a pencil looking for anything that changes the character of the buzz--to no avail. I bought this from a repair shop, and they had gone through and completely recapped it. Being a noobie, is there anything ham-handed I could have done to have fried a cap? I was also wondering if I may have fried one of the diodes in the bridge rectifier when I soldered it in. (I started with an iron that was of too low wattage--maybe too much time on the lead). Would you expect a voltage buzz from that? I haven't had it powered up for any lengthy period, but the iso doesn't seem too be getting hot (one good thing). Thanks again for the info. mjsdiy
gmoon (author)  mjsdiy4 years ago
It's possible you could have damaged a component when soldering. I usually use clip-on heatsinks anytime I solder silicon (diodes, transistors, etc.) or capacitors. It's also possible that switching the AC via a volume/switch combo isn't the best option. You could remove the switch wire routing and see if that cleans up the sound. Would necessitate adding a separate switch, of course.
salad.k5 years ago
I got confused connecting iso trans. it's not working,no light on tubes...I connected, for 220v ac brown wire(ac cord)-->switch-->fuse-->black wire( iso trans)_ blue wire(ac cord)--->green/black wire(iso trans )_ green yellow(ac cord)---> grounded _red wire1,red wire 2--->ss bridge--> +side---> heater -side--->grounded _I tied YEL/BLK-RED/BLK didn't connect to any wire.white wire, didn't connect. I have no idea what is wrong.
P1000386.JPGP1000383.JPG
1-40 of 70Next »