I have been trying to get my hands on a laser cutter for some time but they always seem out of reach. All the great things that can be done with a real laser cutter tickle the imagination.

I feel it's time to share my latest project - a low cost laser engraver,. The workspace is a bit small but none the less it works and comes so cheap that most will be able to replicate the result. I did take a few shortcuts, as I feel I don't have the knowledge to do all the electronics I opted for readymade but low cost in favor of trying to make my own (and most likely fail). All parts used are however easy to find.

I am pleased with the end result even if there is room for improvements. The small size and low power is a bit limiting but I have made allot of fun things already. Paper cutouts, plant markers and stamps among some. The engraver itself might not fit in a pocket but the workspace limits what you can do with it to fit in the pocket.

A word of warning is in place . This instructable is using a ~200mW red laser. It might nut cut through chunks of wood but it will make you go blind if you are not careful. Never look into the beam, even reflections can be dangerous if focused. Please be careful.

Step 1: Acquire the parts.

Most of the hardware comes from my junk bin. The aluminum profiles, the piece of MDF and various nuts, bolts and wires. But some things need to be acquired. Most of the electronics can be found over at Sparcfun and the rest on e-bay or a swap meet.

- Arduino - this is the heart of the control electronics.
- Easydrive - stepper driver.
- Two DVD-rom drivers - Maybe more if you’re unlucky, and at least one DVD-R to salvage the laser from.
- Laser housing - singles can be found on e-bay.
- Laser driver - There are lots of alternatives here, I use a simple LM317 based circuit.
- Various nuts, bolts and other building materials.

Step 2: Rip apart the DVD-Roms.

All you need from the DVD-Roms are the stepper motor assembly and one laser diode. I had a bit of bad luck and found that one of my DVD-Roms had a plastic assembly that would be very hard to work with. Thus I ripped apart three DVD-Roms and only used parts from two of them. It is pretty strait forward and most DVD-Roms I have opened works more or less the same way.

After removal of the screws at the bottom of the drive you can lift it of like a lid. Underneath you will most likely find two circuit boards and none of them are any use to us. But remember to salvage other useful parts that can be used for other projects. For example under the front circuit board there is a small dc motor worth saving. This is when it is time to remove the front together with the front of the tray; the front comes loose after you pull out the tray (just use a hairpin and the small hole in the front). The next step can include some screws and/or mild force. Remove the two circuit boards. Be careful with the ribbon cable to the stepper motor. If you turn the DVD-Rom right side up and remove the cover, you should find what we are looking for, the stepper motor assembly. Remove the screws and just lift it out.

Now that we have the assembly out it needs to be cleaned up a bit. Remove the spindle motor, it could be useful but I feel they are hard to drive and thus don't keep them. They are usually hold in place by three very small screws but sometimes they are part of a larger assembly so be careful that removing it won’t compromise the two rods holding the lens.

The lens is another story, just remove it best possible way, we need a smooth surface to attach other parts to later. Be careful to not harm the DVDR laser diode. It can come to good use if you don't want to buy a new powerful laser later. See the next step.

Step 3: Putting a laser together.

There are so many good instructables on this subject, I will just make this part a quick one and let the pictures do most of the talking.

Removing the laser from the DVDR is not hard but most lens assemblies look different. Locate the diodes (there will be two, one IR and one red) and remove them from the assembly. There are some optics and two magnets that can be saved for future projects. Once you have removed the two diodes you must be careful. The two diodes are very small and fragile. Remove the small connecting PCB strips from the diodes and use two AAA batteries to check for the red diode.

Now that you have the bare diode it is time to mount the diode in the housing. Place the diode in the housing and use the back of the housing to press down the diode very carefully using a vice. When you get this far you are on the home stretch. Solder the wires to the positive and negative pins, screw in the lens and you are done.

Step 4: Construct the mechanics.

To make this as easy as possible I got hold of a piece of MDF just a little bit larger than the DVD-Rom stepper assembly. This will work as the base to hold both the X and Y axis. I found some spacers to hold the Y axis but bolts with a couple of nuts would work just as well. The measurements here are not critical but it is important that every axis is square to the other entire axis. I found that mounting the first assembly level with the MDF would make it easier to align everything.

The workspace is mounted on the old laser diode assembly. Make sure it is flat and level then glue something on that will serve as workspace. I found a piece of 1/4" acrylic that worked out just fine. It made this workspace stable enough but as the laser can shine through it I was not sure if this would be a security hazard or not. Later I found the solution I think works out for the best. I cut a piece of the DVDR metal case to the same size as the acrylic and glued it on. This way it still very stable and you get a workspace that will be tough. One positive side effect is that you can secure whatever you are engraving with small magnets.

For the X axis I found some aluminum profiles in my junk bin but just about anything could be used as long as it is stable. Measure the height you feel will be right for what you want to engrave. I opted for 7.5" long pieces for the support. This would give me a little under 2" clearance.

One important thing, the mounting holes on the assembly are not symmetrical. Be sure to measure the distance from the bottom end of the supports to the linear guides. That way you will be sure to get everything aligned. Where you mount the X axis will be dependent on the laser mounting. The laser should be in the center of the work area when the Y axis is in the middle position. When you mount the axis to the base plate drill a small guide hole for the screws after you made sure that everything is square.

Now you should have the X and Y axis done and square to each other.

The laser mount does not have to be very sophisticated, mine is made from a small piece of plastic sheet and a clip then everything is glued together. Using a clip to hold the laser lets me change the focus point by simply slide the laser up and down. As with all other parts the size is not that important as long as everything is square. There are just one measurement you need to think about here, the laser should be in the center of the work area when the Y and X axis is in the center position.

Step 5: Electronics

I started soldering the steppers. I used a ribbon cable to connect the steppers and solder them to the existing connections from the DVD boards. On the other end I solder a four pin header so that it could be used with a breadboard. The same thing goes for the Easydriver, solder pin headers and use them with the breadboard. Ribbon cable can be found in abundance around old computer shops and service centers. All those old disk drive cables can be of good use.

In the schematics I have added a relay for use with a fan. This can come in handy as the engraving produces some smoke.

The Easydriver have two pins called MS1 and MS2, these sets the step sequence. Tie them both to the five volt output from the Easydriver. This sets the step sequence to micro stepping . The four pins from the stepper connect to the motor output. All steppers I have found have all had the same pinout on the small connecting PCB. Connect the pins in the same order to the Easydriver as on the connecting PCB. The control pins (step, dir, gnd) goes to the Arduino. Besides this the Easydriver needs motor power connected. I use a twelve volt wall wart that drives the motors, fan and Arduino. There is a potentiometer that controls the power to the motors, I just set this to the lowest setting and turn it up a tad if the steppers don't have enough force. I don't know the rating on the steppers, if they gets to hot you’re driving them to hard.

The fan just needs to be connected to the fan output. A small computer fan works well, just connect the positive and negative leads to the correct output.

The laser driver is an LM317 based circuit with no specials. This will work fine but it is far from optimal. I am driving the laser diode far too hard at about 300mA and if you do that you can’t expect a very long life for the diode. The best solution would be to find a stronger laser and better driver but to keep to the spirit of things I wanted to use the laser from the DVDR itself. Laser on/off is controlled by the same relay as the fan.

If you want to simplify you could skip the whole laser driver and use a readymade driver. Then all you would have to do would be to connect the power to the fan relay. Of course this would probably be a little bit more expensive.

The whole thing evolved into a new Arduino shield, the Laser Shield. I have included the schematic and board layout in Eagle format . Creating a circuit board is a bit out of the scope for this instructable, but there are lots of really good guides here on Instructables.
If you want to make your own layout with Easydrivers I have made a Eagle library with the driver, it can be downloaded here .

Step 6: Prepare the Arduino.

For the Arduino I started out writing my own software. But while searching for a good way to control movement from the serial port I stumbled upon something called "Grbl ". This is a g-code interpreter with lots of nifty functions. As I already had everything connected to the Arduino I had to ether change my connections or change the software. Luckily it is easy to change control pins in the software. I did however have to download Winavr and then the code from github.com . It is not that hard to do. After downloading and extracting the code you have to change the port numbers in config.h and make sure you get them in the right order. Then all you have to do is start a command window, enter the correct folder and type "make". If all goes to plan you should end up with a .hex file ready for the Arduino.

I have however changed the pin-out since then and here in the instructable I use the default pin-out of Grbl. This will make it a lot simpler to follow and setup. You can just download the prepared hex file from the Grbl download page .

The current version of Grbl (0.6b) has a bug in the queue system. The laser on and off (M3, M5) commands are not put in the queue and the laser will be turned on and off as soon as the Arduino receives the commands. This is resolved in the edge branch. You can download and the source from here , or grab the compiled hex I am using from here . This should resolve the issue until the next version of Grbl.

Any way you choose to do it you will end up with a .hex file that you must get into the Arduino. I have tried a couple of different ways and the one I like the most is by a program called XLoader . The programming is pretty straight forward; select the correct serial port for your Arduino. Select the hex file and type of Arduino and press upload. If you are using the new Arduino Uno the XLoader doesn’t work, you will get an upload error. In that case I recommend using ARP/Arduino Uploader but even this uploader has some issues with the Uno. When programming the Arduino select the com port and microcontroller in the respective dropdown. After that you will have to make a change in the “AVR Dude Params” text. Erase the “-b19200” (without the quotes) part and click on the upload button. In any case, a couple of seconds later you are done and are ready to try it out. Exit the XLoader and get to the next paragraph.

The Arduino needs to be set up for the job. Start your favorite serial terminal and open the port your Arduino is connected to. You should get a welcome message:

Grbl 0.6b
'$' to dump current settings"

If you enter $ followed by return you will get a list of options. Something like this:

$0 = 400.0 (steps/mm x)
$1 = 400.0 (steps/mm y)
$2 = 400.0 (steps/mm z)
$3 = 30 (microseconds step pulse)
$4 = 480.0 (mm/sec default feed rate)
$5 = 480.0 (mm/sec default seek rate)
$6 = 0.100 (mm/arc segment)
$7 = 0 (step port invert mask. binary = 0)
$8 = 25 (acceleration in mm/sec^2)
$9 = 300 (max instant cornering speed change in delta mm/min)
'$x=value' to set parameter or just '$' to dump current settings

You must change the steps/mm for X and Y axis to 53.333 on both. Just enter "$0=53.33" followed by return and then "$1=53.333" followed by return. Z axis can be ignored as it is not used. The acceleration can be ramped up to something like 100 ("$8=100" and return). As we move really slowly with this machine acceleration can be high. Another side effect of low acceleration can be that curves get a lot more burnt than straight lines as the controller constantly tries to accelerate and decelerate but never reach full speed. If you build this like me one of your axis might be mirrored. This is easy to fix. Option $7 lets you change direction on axis. I wanted to change direction on the X axis so I type in "$7=8" as I want to change bit 3 (8 = 00001000 binary) if you want to change direction on Y axis you type in 16 (00010000) or 24 (00011000) to change both. The complete documentation of the invert mask can be found here .

Now you are ready for the computer setup. If you want to try some movement you can type "G91 G28 X0 Y0 [return]" to zero the axis. Followed by "X10 Y10 [enter]". You should see 10mm movement on each of the axis.

Step 7: Getting the software ready.

I will just go through the basics here. What software you need, how to set it up and the basic tool chain. I will only talk about windows based systems, all you Linux people will have to do some digging around (even if Inkscape and the extension should work fine on Linux as well). First you will have to download three files:

Inkscape - this is open source vector editing software. (download )
Laser engraver extension - This generates the g-code needed to control the laser. (download )
G-code sender - A small windows program I wrote to communicate with Grbl. (download )(source )

Install Inkscape by following their instructions. This should be a pretty painless process. And any help on the subject should be easy to find in the documentation on their web page. Next up is the extension; this is a little harder but not much. Open the .zip file in your favorite unpacker and copy all the files to "c:\Program Files\Inkscape\share\extensions". You have to restart Inkscape for the extension to show up. The extension is a heavily modified version of "Gcodetools ". That is it for setting up Inkscape. You can leave the "G-code sender" on your desktop or any other place where you will find it later. It does not need to be installed.

One important word about the extension, I am not a python programmer and there might be some kinks in the code.

I assume you have everything installed and ready to use by now. Here is a quick screencast of the work flow.

I hope this was not too quick. There are loads of guides on how to use Inkscape out there. I will not go into any details on how to use it.

The G-code sender is another story; there is no documentation as I just made the program. All the documentation is in this instructable, but feel free to ask if you have any questions. When you open the program it should be pretty self explanatory. The only strange thing is the radio buttons "\n\r" and "\r\n". Depending on what version of Grbl you are using the line ending are different. If the one doesn't work try the other one. Choose your serial port, and if you do forget to plug in your laser engraver, plug it in and hit the refresh button and your serial port should show up. Hit the "open" button to open hailing frequencies. Once the port is open you can type in commands like any terminal software in the text box above the open button. To start engraving a file you can ether type in the file path or click on the browse button and select a file.
When you click on "print" your file transfer will begin. The file will be transferred until the buffer on the Arduino is full, about 20 rows or so. When the buffer is ready for more data another row will be transferred. When you hit stop the transfer will end but the Arduino will not stop until the buffer is empty. When you hit the "close" button or exit the program the serial port will be closed and any transfer will be stopped.

Sometimes there will be a G-code that Grbl can’t interpret and will return an error. Most of the times these errors can be ignored but they will show up in the sender. This can be comments or the start and end "%" sign. If there is a comment after a command there will be an error but the command will still be executed. For example "G21 (All units in mm)" the G21 command will be executed but the comment will give an error.

Step 8: Final assembly and extras.

To finish the small engraver I made a small box from the Masonite board I found in a picture frame. It is just glued together. In the front there is a small fan from an old graphics card. The cooling is necessary for the Easydrivers when you mount them in any kind of housing. They get hot when out in the open and even hotter in some sort of housing. In the box I glued some threaded spacers; this allows me to screw on the bottom. The Arduino is in turn screwed to the bottom. It makes the engraver into a useful and easy to handle little tool.

Some small extras have been added along the build. First of is the fan that keeps smoke away from the workspace. This is a small 40mm computer fan connected to the laser relay that I wrote about in the electronics step. The fan is pointed away from the workspace and gently sucks away smoke.

Another small but very useful extra are the magnets to hold down paper and other light weight objects. I got these from an old toy . After gluing some nuts on top of them they are done.

To change the focus you can screw in and out the lens. Or you could set the focus once on the workspace and then slide the laser up and down in the mount. This is how I do it. I have a set focus when the laser is at the lowest possible position in the mount. Then all I have to do is measure the thickness of the material and raise the laser the same amount. Most times I just hold the material next to the laser mount and move the laser to the correct height.

Step 9: Final results.

Here are some of the things I made with this little engraver so far. I will let the images tell most of the story. The only limit is your imagination (besides the low power and small work area).

Key chain.
I found some paint stirrer sticks at my local DIY shop. I liked the look of the wood and they were cheap. I saw of a piece and drilled a small hole. After some sanding I engraved the Binford logo from the sitcom "Home improvement".

Plant marker.
A normal Popsicle stick engraved with the plants name.

Personalized matches.
I'm just trying to show off ;)

Memo note holder.
A clothespin engraved and with a small neodymium magnet glued to the back makes a great way to stick a bunch of notes together on the fridge or any other metal surface. I like clothespins they are very versatile.

Cut out of a small foam sheet and glued to a piece of Masonite.

Thanks to scriptster who made the G-code for the model. Check out his model here .

<p>after you have done all that how does the engraver know where to start? when do you set the xy home points?</p>
<p>i am using arduino uno and L293D shield...where do i connect the laser??</p><p>This is my first electronic project. I really dont know much about the circuit</p>
<p>Hi, geceng! In my first attempt, I build this engraver on L293D, but there is no compatible software to use it. All standard CNC working with controllers with &quot;DIR-STEP-GND&quot; control signals, and no way to use L293D without problems. May be - add another ArduinoMini for &quot;Dir-Step&quot; signals emulation. One Arduino - with GRBL software, and another - with dir-step controller emulation on L293D.</p>
<p>no need to add another arduino... use L297 controller...(see sample using ULN2003)</p>
<p>Hi I want to know what is the segment that lies between Alardueno <a href="http://www.sparkfun.com/products/10267" rel="nofollow">Easydrive</a> and what their function is and whether Zerorah</p>
<p>I'm having a whale of a time getting anything to print right at all! My prints are all wonky no matter where I set the potentiometers on the EasyDrivers, I've tried every level of microstepping, including full-step. In full-step mode, my motors are taking only 6.5 steps per mm, which is ridiculously low-res! Here is my attempt at printing a tiny circuit:</p><p></p><p>It's supposed to look like this:<br></p><p>I'm using grbl 0.9j, FlatCAM to make the paths and a python script to turn Z movements into laser toggle commands. </p><p>Help Please!</p>
<p>Maybe I have not read it pretty well, but I can not find anywhere how much voltage should be marked in the image introduced into the circuit? If you need one at all. The answer Thank you in advance!</p>
<p>That jumper is just an alternative connection for the laser. If you follow the paths you will find they connect to the same as the laser screw terminal. The laser circuit will draw power from the arduino and the Vin pin.</p>
<p>This is very awesome! Thanks for this instructable.</p><p>We want to help you to complete your new project, and now there are some products about arduino and 3d printer on our website.</p><p>we can send them to you for free.Here is link:</p><p><a href="http://www.gearbest.com/3d-printer-parts-c_11400/" rel="nofollow">http://www.gearbest.com/3d-printer-parts-c_11400/</a></p><p><a href="http://www.gearbest.com/development-boards-c_11297/" rel="nofollow">http://www.gearbest.com/development-boards-c_11297/</a></p><p>Or this:</p><p><a href="http://www.gearbest.com/3d-printers-3d-printer-kits/pp_242560.html" rel="nofollow">http://www.gearbest.com/3d-printers-3d-printer-kits/pp_242560.html</a></p><p>My email:luffy@gearbest.com </p><p>Luffy</p>
<p>how concerned should i be about eye protection.</p>
<p>Will Inkscape work with text? I'm after a simple text to engraver with as few steps a possible. I'm afraid I haven't a clue how to program and I'm too old to learn :-) Also is the somewhere on-line where I can download .nc files to use with my 500mw Laser engraver. Thank you in advance.</p>
<p>Find a program called CAMBAM, there is a free version that does a lot. It takes a bit of learning (there are some tutorials and a forum) but you can make text of all kinds, there is an add-in to do curved text. You can import dxf files you make in other CAD programs, and you can do some minimal things right in it. Once you have your design or text or some combination of all the above, you can select them, generate gcode to engrave, pocket carve, or some other operations. Then just use those gcode files. No programming necessary but you will have to spend a bit of time to learn how to use it.</p>
Thanks for the info on CAMBAM. I'm not too sure if I have the patience to tackle yet another program, but I'll certainly download it and try my hand at using it. Who knows, I might just be able to handle it. I'm still looking for a download library of ready made engraving files. I'm surprised nobody has thought of it. Oh to be 40 years younger :-)
Thanks RTChoke, I'll go searching for it right now. I appreciate your help. Stu
<p>I actually just set up my machine the other day and used CAMBAM to generate some test text to try it out. I made some text, selected the CAM function to &quot;engrave&quot; and it did that operation, then generated gcode from that. Loaded the gcode into the laser engraver software and ran it, burned the image fine except that the controller needs the proper gcode commands to turn the laser on/off as moves around -- it never turned off so there are burn lines where it went from one letter to another. I think that is easy enough to do by editing the gcode (just open the gcode file in a text editor of some sort) to replace the up/down commands (CAMBAM is set up for CNC routers so tells the router to move in the Z axis, the laser controller ignores that but the Z move commands can be replaced with &quot;laser off&quot; &quot;laser on&quot;) with the M commands (M04 M05 maybe? I have not looked at other code yet to see what the proper commands are) that the laser controller expects. I have not fooled with it yet but will try. Don't be intimidated StuartB4, it is not hard just takes a bit of digging and learning to make things work! I also need to see how the controller and software works to see if I can control the speed and intensity of the laser. More fun!</p>
<p>Inkscape with work with text. There are a couple of ways I have used Inkscape to engrave text. </p><p>To engrave the outline: <br>Type the desired text. Select the text. (Important bit) Select Path-&gt;Object To Path. Select Extensions-&gt;Gcodetools-&gt;Path to Gcode (you could use other options, this is what I use). Go through the various tabs of the dialogue box and set it up how you like (you might need to experiment), but (another important bit) when you hit 'Apply', make sure you are on the first tab (the 'Path to Gcode' tab). </p><p>To engrave solid text:<br>I added an extension for this. It is 305 Engineering's 'Raster 2 Laser Gcode Generator' (you'll find it on the web if you go looking for it). This method takes much longer. I use the slowest setting of 10 pixels per mm - it looks the best. Once you have installed the extension:<br>Type the desired text. Select Extensions-&gt;305 Engineering-&gt;Raster 2 Laser Gcode Generator... Go through the dialogue box and set the parameters you want (default is ok for most). This outputs a number of files, one being the gcode file, another being a preview which is very useful. It will create gcode for everything on the page, so I work in layers and show only the layers I want printed when I do this. </p><p>Though I was inspired by Groover's instructable, I did some things a little different. I have Marlin running on my Arduino instead of grbl. So I make some manual changes to the gcode files to get the it to turn the laser on and off, etc.</p><p>But in answer to your question: Inkscape works with text. </p><p>I will put a photo in of some text engraving I did with Inkscape 'Wooden Spoon' was done with Gcodetools (so it is an outline). 'FIJI' was done with 305 Engineering's extension.</p>
Thanks for that very detailed tutorial. I'll definitely give it a go as soon as I sort out my laptop. It won't recognize it's built in graphics card for some reason. I'll download the latest driver and see if that sorts things out. Sometimes I have to wonder what I did with my spare time before computers. :-)
<p>Can any1 describe the parts in the circuit layout please?</p><p>I'm a total newbie to electronics and don't know the codes.</p>
<p>The relays and other things there are unnecessary unless you want the fans to be controlled, otherwise just wire it to a power source. Also do not use a LED driver for lasers-Their wattage types are different. Just use a lm317 with a 3ohm resistor across the ADJ and VOUT of the regulator. Otherwise if you're lazy like me, simply rely on the Arduino's regulation of 200ma. Hope it helped!</p>
<p>First, sorry for the silly question (Electronic newbie here)</p><p>Second, If I didn't missunderstand, all the components in the circuit layout (Besides the arduino and easydrivers, in the red box at the image), are for controlling the fan and the laser?<br>I mean, can I simply replace all that components with a readymade driver or with the circuit from the instructable that IT-Wizard has linked? (http://www.instructables.com/id/DIY-Laser-Diode-Driver-Constant-Current-Source/?ALLSTEPS) I want to learn what I'm doing, and that instructables is more explained, hahaha (Can I have a little more information in using the LM317 with the 3ohm resistor? That seems to be a lot more simple, and cheap, for a newbie like me)</p><p>Thanks for all the help</p><p>PS: Great Instructable!! :D</p>
<p>Also, if I replace that components with a readymade driver (Or any other method for controlling the laser), what connections I need to make to connect it to the arduino and the easydrivers?</p><p>Thanks</p><p>PS: Sorry also for the bad english, it's not my first languaje</p>
<p>yep you can directly connect fans to the 12v rail and put a driver in between the transistor and the laser. An easier schematic for the arduino nano is attached. Its the bare minimum!</p>
<p>Thanks for the easier schematic, but I have some more questions (Probably they're mostly silly questions, so please, excuse my ignorance).</p><p>- The stepper drivers don't need connections in their 5V pin to work?</p><p> - I can't see the resistances value very well. Are they 100 ohms, 22 ohms and 4.7 ohms? What electric power (In W if I'm not mistaken) they need to have?</p><p>- What represents the &quot;boxes with circles&quot; int he circuit (Marked in red in the attached image)? My understanding says that they are simply connections to the fans and their 12V power source but, why are they represented with that symbol, unlike, for example, the connection to the laser, in blue in the image, that don't have the &quot;box&quot; around the &quot;circles&quot; representing the connection?</p><p>- Also, what are the &quot;box&quot; marked as Interlock switch (Yellow in the image), and what it's his function? I have never heard if that kind of switch but, as I can see in Google, they are some kind of security switch for electronic installations, if is that, what kind exactly i will need?</p><p>- What values have the diode marked in orange? I can't barely see anything in the image.</p><p>- The laser driver doesn't suppose to have a LM317 in it?</p><p>- Aside the fans, all the circuit (Even the laser) are powered with the 5V pin of the Arduino (Powered by USB)?</p><p>Excuse me for so many questions but, as I said before, I want to learn and understand all before attempting anything haha.</p>
<p>Excuse me, I forgot to attach the image</p>
<p>The boxes are just symbols for connectors but they are for the fans, the interlock switch is unnecessary but i have it in my design, you can by pass it if you want, your ohm readings are correct and the diode from the transistor is necessary to connect to the rest of circuit. Everything except the stepper drivers and fans are powered by arduino. The resistors are there to lower the voltage to the laser. The stepper driver's 5v to my knowledge is it's output.</p>
<p>Woah, thanks for the answers, all is a lot clearer now.</p><p>Only three little questions more (Sorry):</p><p>- What type of diode is needed to use? By the symbol I sopose it is a regular one, I mean, not zener or something like that, but also, I'm looking to buy it and there is various types (As I see they only vary in the voltage, but I'm not sure if it is the only difference, and I don't know what kind buy)</p><p>- What Watt value does the resistors need to have? I know that you can calculate it assuming the 5V from the arduino and the Amps needed by the laser (But honestly, I don't know the Amps from the laser or how many can you use as &quot;average&quot; for most of the laser diodes from DVD-R)</p><p>- With this setup, you don't need the LM317 regulator? I've seen it in all the laser drivers schematics I've found so far.</p><p>Excuse the new questions and, as always, thanks for all the help.</p>
<p>As a electronic newbie myself, I bought a laser driver on ebay.</p><p>works fine.</p>
<p>can this work?</p><p>http://www.ebay.in/itm/BTREE-1W-LED-DRIVER-350-MA-1-X-1W-VERY-HIGH-QUALITY-PYROTECH-INDIAN-MADE-/111647275241?pt=LH_DefaultDomain_203&amp;hash=item19feb238e9</p>
<p>It is wierd. It looks like an average power supply.</p><p>Plus, you won't be able to drive it via the arduino. What I have is a PCB laser diode driver.</p>
<p>check this DIY laser driver : http://www.instructables.com/id/DIY-Laser-Diode-Driver-Constant-Current-Source/?ALLSTEPS</p>
<p>I do have the driver but it does't have the relay.</p><p>Can u suggest anything?</p>
<p>There is no relay on mine.</p><p>(see pic) 2 power in, and 2 power out.</p>
<p>Please which pins of the arduino did you connect the laser driver power input (+ve and -ve) to?</p>
<p>Hi,</p><p>For the laser connection, I set the + to the pin 12 of arduino, and negative ti GND.</p>
<p>Alright, I'll do it your way! One more question though, my ready made laser driver has an input rating of 4.2V, please how do I make pin 12 give out 4V or less, this is my first arduino project</p>
<p>Hi,</p><p>Can u please upload the pic of your pcb?</p><p>I mean how you wired it to pin 12 of arduino with GND and VIN.</p><p>I have nearly completed the assembly of whole unit except the laser driver :(<br>I have attached the picture for reference of my assembly.</p>
<p>In the Groover's diagram there is a relay from the arduino data pin#12.</p><p>You are using a ready to use board on your own.</p><p>You can help other newbies like me on how does your arduino turn the laser on off without the relay.</p><p>Did u modified any code and using +5v pin from arduino itself?</p>
<p>I guess the relay on the schema is for the Fan not for the laser.</p>
<p>the software from http://www.banggood.com/300mW-Mini-DIY-Laser-Engraving-Machine-Picture-Logo-CNC-Laser-Printer-p-958368.html?utm_source=youtube&amp;utm_medium=youtube_direct&amp;utm_campaign=300mWMiniDIYLaserEngraving%201223&amp;utm_content=sami seems to work for me, does it for you?</p>
<p>hello, im very new to all this, just got myself a laser cutter/engraver to make projects I designed on solidworks, but im having problems with everything from once I leave solid works! very good work done by you and iv been following the steps on ur video and when I hit apply on the laser option I get- directory does not exist! please specify existing directory at preference tab! im a little clueless to all this and ur help would be most appreciated</p>
<p>Great work!. I'm new to this and hopefully you could assist me with my query.can you use this to etch a circuit on a PCB? or is the laser powerful enough to etch through the copper of your PCB?... Thanks &amp; best regards</p>
No. The copper will reflect the laser rather than absorb the heat. And what heat it does absorb will be quickly dissipated to the surrounding copper.
<p>I am having a weird problem. I created a file. Using a program called All To G-Code Converter, I created G-Code. Then, sending the file to the engraver, it moves in X-Y axis but later doesn't engrave. I ca't make it work using Laser Engraver software at all. Help!</p>
<p>you need to edit file &quot;laserengraver.py&quot; probably located &quot;C:\Program Files\Inkscape\share\extensions&quot; and change starting and ending (M04, M05) command to M03, M04. It should look like this:</p><p><br>&quot;gcode before path&quot;: &quot;\nM04&quot;,</p><p> &quot;gcode after path&quot;: &quot;M03\n&quot;,</p>
<p>Did your laser ever light up? Is it connected correctly ?</p>
<p>AMAZING job! </p>
<p>hi,thank you so so much for nice job.i make it and now i have a <br>problem.i can not send my g code to arduino.</p><p>please helpe me how to send g code to arduino with g code sender and grbl cotroller.</p><p>please introduce vidoes On this problem.</p><p>my email:kambiz3221@gmail.com</p>
<p>Good job</p>
<p>Hi I am trying to use your gcodesender, but when i try to open the COM port, it says the COM port does not exist. What should I do? I am using Grbl 0.9 if that makes any difference.</p><p>Thanks</p>
i have problems with grbl 0.9.<br>i use v0.8c

About This Instructable


3,854 favorites


Bio: I'm just a poor lonesome cowboy... Not really, I am divorced and live in the cold country of Sweden. I am not much of ... More »
More by Groover: Steampunk instant sounds Stamps from craft foam. Pocket laser engraver.
Add instructable to: