Biting Obstacles Autonomous Robot « Sanglier » (boar)

26K17512

Intro: Biting Obstacles Autonomous Robot « Sanglier » (boar)

General concept

Our first idea was to create a tracked robot able to climb stairs and plenty of others obstacles, to reach a good speed (around 10 or 15 km/h) while filming and transmitting data. It will decide itself if it can go through an obstacle like a slope, stairs or a hole.  Recognizing people and following them, take panorama pictures, follow a GPS designate way are its objectives.

STEP 1: Chassis

We made a wooden chassis because wood is cheap and easy to transform. We used 5 mm plywood. This chassis need to be quite big if you want to set batteries, engine and electronics in it and suspensions, wheels and turret at the exterior; there is no maximum size but making it too big can be a problem  for the gravity center of the robot when it climbs stairs.

STEP 2: Tracks

This is one of the hardest parts of the construction so be prepared.
We used :
- 4 bicycles chains that a bike store gave to us (they are about 140/150 cm)
- 4 identical gearwheels that we bought near 5 € each
- wire
- aluminum rod (about 2.5 m)
- rubber (quite the same length than aluminum rod).

We attached the chains by pairs with the aluminum rod and wire and then we attached the rubber to them.
Power wheel are made of 2 gearwheels with one wooden disc between them. Be sure to have the same space between the chains at every new component you add, then you can circle your chains.

Here is our first test od the tracks !

STEP 3: Turret

We used the same plywood for the chassis and the turret, you can do every design you want. The turret rotate with a Servo controlled by an Arduino, we replace the gun by a camera that can go up and down with another Servo. The roof plate is fixed by three screws so we can access easily to the inside, the other plates are pasted.

STEP 4: Suspensions

We used 4 roller wheels, 4 RC car hydraulic suspensions (We will double them soon), and 1m of squared aluminum rod to make it more solid. We attached the rods and the suspensions together with screws. The wheels are link to the rods.

STEP 5: Sensors

1) Obstacle detection :
To make an autonomous robot, we had to put a lot of sensors.
First, we had to determined what we had to detect, which obstacles.
- wall (impassable)
- stairs (passable)
- ditch/hole (impassable)

So we created a simulator which contain a few obstacles, and all the sensors we needed on the robot. (http://team-gs.fr/Robot%20Chenille/simulation.html)

Then, we had fix all of this sensors.

We are using ultrasonic sensors : HC-SRO4.
It's cheap and reliable.

2) Other sensors :
We added other sensors like 3-axis magnetometer (as compass), GPS module, 3 axis accelerometer and gyroscope.
These sensors are used to optimised the movements of the robot and allowed it to know where it is, and in which position.

All of these sensors were fix with plywood and 2mm screws.

STEP 6: Assembling the Robot

This phase is relatively short. The turret is fixed to the Servo on the upper plate of the chassis, this place is also equipped with 2 fans, antennas, and 2 handles for an easy access to the inside of the chassis. The suspensions are screwed to the lateral plates (be careful of the tracks length). The tracks are posed on the power wheels; the motors are combined with a gear motor to generate more power.

STEP 7: Programm

Actually, the programm is not operationnal.
The robot is Remote Controlled but not autonom.

But in a near future, we will try to implement the auto-detection of obstacle.
A video transmission of the raspi-cam to our netbook.
An automatic 360° panorama.

And finnaly, we will try to add some huge features like "people follow", "go back home", and why not face recognition ?!

STEP 8: Conclusion

This robot is not finished but we are working on it !
We will post updates as soon as possible.

And some videos will come too !

UPDATE 2013/07/08 => 2 videos

Here is the video of the first move :

12 Comments

Very cool looking vehicle. I am glad you posted this. I have been collecting parts for a robot project for a few weeks and was about to make a small rc car sized vehicle. After seeing your larger project, this seems like a better idea for future upgrades and experiments. Could you post the size of the engines (I could not find it in the pictures) and is power supply you are using a 12v lantern battery? It looks like it has individual cells. Also, how heavy is the wooden frame you created? For less jostling, I was going to use a rubber disk suspension, but that might not be enough if the vehicle is weighty.

Thanks again for posting this. Great job!

C Anderson
We are currently using some parts of a RC tank (1/16). But we have some problems, two plastics gears just broke while we were trying to move the robot.
We are looking for some new gear (maybe int metal) and new motors.
Here is a link of similar stuff : http://www.absolu-modelisme.com/chenilles-metal-german-panther.html
I don't know "Lantern battery".
But we are using a 12V lead battery for the RaspBerry Pi and the arduino (after DC/DC conversion).
For motors, we are using a 11.1V Li-Po battery with 2200mAh, but we will probably use a bigger one after.

The wooden frame is very strong, we can load it with 5kg and more without any problem.

The approximate weight of the robot is 5kg with all the electronic/motors/batteries...

I hope it will help you, if you have other question, ask me!

SnowViet

PS : tell me about the evolution of your project.
What did you use for the creation of the blueprints?
For 3D modelisation, I used SolidWorks.
It's not the best but I used it in school.
For 3D modelisation, I used SolidWorks.
It's not the best but I used it in school.
This looks cool,

and "Tanks" for posting it
GREAT JOB! Can't wait for vids. Let me know when this project is complete, I would like to feature it.

Audrey
Community Manger
Instructables.com
Thanks for your feedback !
I added some videos, hope you will enjoy.
We had a problem with the motor gear, so next update will not be soon.