EVERYONE Needs a Multi-Meter

401K340221

Intro: EVERYONE Needs a Multi-Meter

A multi-meter can save the average person a lot of money over a few years, even though ladies who choose to buy one may not carry it in their purse when going out for the evening. You will often be able to solve many problems yourself in less time than it would take to get a technician to come to your home. This Instructable will show how to do that simply and easily.


I often meet handy people, both men and women, who do not go near to anything electrical because they are frightened of electricity. It is good to have a strong respect for electricity. It is also good to know how to make basic electrical measurements around the home. A multi-meter is the tool every home ought have. They eliminate the guess work from so many things and can save a lot of money. 


A suitable multi-meter for occasional use around the home and automobile can be had for relatively little. I had been a fan of the little meters Harbor Freight often gives out for practically nothing, but something changed. Some I have begin to give erratic readings. I have a similar meter from Home Depot that is fine, but did cost a little more.

STEP 1: Will I Electrocute Myself?

No, that will not happen if you follow a few simple precautions. Most home uses of a multi-meter will be done with the power disconnected, or with very harmless low voltages. Regardless, you will always handle the probes by their well-insulated, completely safe plastic "handles." Usually, you will hold one in each hand.  

The black probe is normally associated with the ground or negative terminal. The red probe is normally associated with the "hot" or positive terminal. For household uses illustrated in this Instructable you can ignore all of that and use either probe on any terminal. 

STEP 2: So, What Can a Multi-meter Do?

See the first photo. You can test common batteries, but that is only the beginning of what you can do with a multi-meter. Set the selector to DC volts. Notice the symbols for AC (alternating current) voltage and for DC (direct current voltage) as highlighted by the yellow text boxes. Batteries use only DC voltage.  Set the selector to the proper range on the DC scale. Household batteries like AA and AAA are rated at 1.5 volts. On this meter, select the 4 volt range on the DC scale for common batteries. If I were testing a 9 volt battery with this meter, I would need to move the selector to the 40 volt range.  

(This meter has an ON/OFF slider switch. Many meters turn on when the round selector switch is moved to any setting range. OFF is at the top of the selector dial on those units. Meters have internal batteries. Turn the meter OFF when finished to save the batteries. Many meters switch themselves off automtically after a few minutes.)

See the second photo. Touch each end of the battery with a probe.  Ideally, the red probe touches the "+" end of the battery and the black probe touches the "-" end of the battery, but in practice it does not matter for this purpose. A minus (-) sign will appear in front of the numbers if the red and black wires are reversed when testing the battery. You are interested in only the numbers. A 1.5 volt battery is "dead" when it registers 1 volt or less. If a device does not work, but the 1.5 volt battery registers (for example) 1.38 volts, a new battery will not make it work. There is another problem to be solved. A 9 volt battery is "dead" when it falls to read about 7.5 to 8 volts. But, when a battery is "dead" also depends on the application. I use a 9 volt alkaline battery in a wireless microphone. I have learned by experience that a battery with a voltage below 8.5 volts will not last through a one hour church service.

Shown in the photo are several types of common batteries: a 3 volt camera battery, a 9 volt "radio" battery used in smoke detectors and other things, a button battery used in watches and other instruments, and a common AA battery. In this test the AA battery registers 1.59 volts, which is new in condition.

There are dedicated battery testers you can buy, but a multi-meter costs about the same and does so much more. Some multi-meters come with a battery test function built in. Such a function adds a resistance to test the battery under a load similar to what might be encountered in a device. Here is a way you can add a battery test function to a meter you already own.

STEP 3: Your Car Battery

One morning you turn the key in your car, but the motor turns over too slowly to start. You suspect the battery may be dead. Set the meter selector to 15 volts DC or more. Touch the meter probes to the terminal posts on your car battery. The meter will read 12 to 13 volts, but you want to know what the voltage reading is when the battery is under a load. Have someone turn the key while you watch the meter. If the meter reading drops to around 9 volts or less, you need to charge the battery and see if that solves the problem. If you still get a reading of about 9 volts under load after a sufficient period for charging, you probably need a new battery for your car. 

STEP 4: Corrosion?

See the first photo. Your car battery may be in good condition, but the starter still barely cranks the engine. The problem could be corrosion at one or both of the battery terminals. Sometimes you will see white or blue powder around the terminals, but often the corrosion is not visible. The photo shows an old-style battery terminal.  If your car (or motorcycle or riding lawnmower) has this type of terminal, see the text boxes for where to place the voltmeter probes. Set the voltmeter to a DC setting slightly in excess of 12 volts. Have a helper turn the key to crank the engine.  If the battery connections are good, the voltmeter reading should remain at zero (0).  If the battery connections are corroded, they will provide a high resistance, perhaps even an open circuit, and current will try to go through the voltmeter as an alternate route. The voltmeter reads the difference in voltage between one probe and the other. That means the voltmeter will show a reading equal to the voltage of the battery.  Clean or replace the battery terminal by taking it apart, dissolving the corrosion with baking soda in water, and scraping the parts of the connection. If you use your multi-meter just once for this, you will have saved enough money to pay for it.

See the text boxes in the second photo. The newer side post battery terminals are now more common than the old-style shown in the first photo. Much of the terminal is covered with insulation. One meter probe touches the terminal's bare metal bolt. The other probe can touch a straight pin pushed through the cable's insulation. 

(The first photo is from Bing Images.)

STEP 5: Light Bulbs

Is your light bulb burned out, or is there a problem with your lamp? The first test is to check for a circuit through the light bulb. Use a low resistance or a CONT setting. This test will not work with the compact fluorescent bulbs, nor with fluorescent tubes. Those do not have a continuous conductor running through them, like an incandescent light bulb.  Rather, they are filled with a gas that becomes a conductor when exposed to a high voltage electrical charge. 

If the bulb tests good, some further checks on the lamp socket are necessary. See the second photo. Set the meter to the 400 volt AC selection. Touch one probe to the side of the bulb socket.  Touch the other to the tip at the bottom of the socket. The meter should read about 120 volts. (Note: I live in the USA where most electrical outlets operate on 120 volts. Heavy duty appliance circuits [electric stoves, clothes dryers] use 230 volts. In many other parts of the world the standard voltage in household electrical systems is 230 to 240 volts. Adjust the readings you expect according to the normal voltage provided in your locale.)

You may find the expected voltage in the bulb socket and also the bulb are good, but the lamp still does not light. If the socket is older, the contact tip at the bottom of the socket may have lost its springiness and it may not make dependable contact with the center tip of the bulb. Use a popsicle stick to lift the tip. If you can be sure there is no electrical power to the socket, you may use a screwdriver. Then screw the bulb into the lamp socket and it should work. In time you may want to have the lamp socket replaced, but it can work this way for a long, long time.

STEP 6: Fuses

Many devices use fuses, from your automobile to your household air conditioning system. A fuse is an electrical conductor designed to fail when a pre-determined threshold of current is present in the circuit. Their purpose is protect the rest of the circuit from a current load that would destroy it. 

Sometimes fuses are out in the open where they are visible. Sometimes they are under a cover marked "Fuses." Sometimes they are inside an appliance with no notice of their presence. This is true of some microwave ovens and some television sets. Open the case and look for a small cartridge fuse like the one shown in the photo. The fuse will usually be near where the electrical cord comes into the appliance. You may have thought you need a new microwave, but the real problem may be only a small fuse costing less than a dollar. Sometimes there is a more serious problem that will cause a new fuse to "blow," too. But, more often, the old fuse simply became weak or "blew" because of a momentary electrical surge. If your multi-meter saves you from replacing an appliance that failed due to a blown fuse, your meter will have paid for itself many times over. 

It is always good if you can have extra fuses available for whenever one needs replacement. When you need to buy a fuse, take the old fuse with you to the store so it can be matched. Fuses come in a variety of physical sizes and types. It is important to replace a fuse with one exactly like it. Some fuses are available at your local hardware or building supply store.  Some, like small cartridge fuses similar to the one shown in the photo, are available only where electronics parts are sold, or on-line. Identifying numbers are imprinted on the shiny metal end caps.

The fine wire in cartridge fuses is often so fine that it is difficult to see with the unaided eye. Some fuses have a solid body that blocks vision. When testing fuses set the multi-meter to CONT. for continuity. Touch the probes to the ends of a good fuse when on this setting and you will hear a shrill tone indicating there is a continuous circuit through the fuse. No sound means a bad fuse. The words "continuity" and "continuous" are purposely related.

WARNING: If you open the case on a television or a microwave, be careful not to touch components other than the fuseholder. There are parts that retain a high voltage electrical charge. It is not likely you would touch these, anyway; but, if you did, they can kill.

STEP 7: Your Air Conditioner Unit

Air conditioning systems always seem to fail during the hottest, most miserable weather. No one wants to spend a muggy night trying to sleep with no air conditioning. If the problem is only a fuse, your meter can save you the cost of a service call by a technician, and you can have your system up and running again before the house has even warmed up inside.

Your air conditioning system may have more than one set of fuses protecting it. There may be a set of circuit breakers in your main electrical panel. Check to see that the circuit breaker toggles have not moved to the "off" position due to a sudden overload. Go to the air conditioner unit outside your house. Look for any cable conduits (metal pipes, some flexible). Follow them with your eye and look for any metal boxes that might contain fuses. The fuses will likely be mounted in a fuse block that can be pulled from the box. Use the continuity setting to check the fuses. The first photo shows a control box near our heat pump/air conditioner. It looks like it might contain fuses, but it contains only a disconnect switch.  

See the second photo. It shows the inside of the fuse box that controls our air conditioner. The yellow text box contains information on the ON/OFF switch. I overlaid the photo with capital letters as markers. Those in red make a "hot" circuit even when the switch is "off." Keep your hands safely away from these terminals.

Set the meter to the 400 volt AC setting. If you place one probe on A and the other on B, the meter should read about 230 volts. That is true whether the switch in the box is "on" or "off." Place one probe on A and the other on C. The meter should read about 115 volts. Place one probe on B and the other on C. The meter should again read about 115 volts. Readings between F and C or G and C should also each give a reading of about 115 volts when the switch is "on." These readings indicate the fuses are good. With the switch in the "off" position, readings between F and C or G and C should be zero volts.

If you wish to check the fuses without them being electrically charged, move the switch lever to the "off" position. Set the meter to CONT. Touch one probe to D and the other to F. You should hear the meter's shrill chime tone. Now place one probe on E and the other on G. You should hear the tone again. This also indicates the fuses are good. If one of the fuses does not test good, be certain the switch is in the "off" position. With your fingers or a pair of pliers or a wooden stick to pry, remove the bad fuse. Take it with you to a hardware or building supply store and get a replacement. Use a fuse. Do not use a piece of metal, a piece of copper tubing, or a wire with alligator clips to bridge the space for the fuse. In the days when most homes had screw-in plug fuses some people sometimes put a copper penny behind a blown fuse when they did not have a new fuse. Then they often forgot about the penny. Pennies do not burn away like a fuse does when there is an overload. Pennies used this way often caused house fires. There was a frequent saying that, "The words 'In God We Trust' were placed on pennies for the benefit of those who use them as fuses."

STEP 8: The Electric Clothes Dryer Does Not Dry.

The wet clothes in your dryer are still wet after running for the full cycle. The drum turned. The dryer went full cycle. What could be wrong? First check for a clogged filter or vent pipe. If those things are good, the problem may be electrical, and a multi-meter can help you find and fix it.

Dryers operate on two different circuits at two different voltages. The motor that turns the drum works on 115 volts. The heating element works on 230 volts. The electrical outlet behind your dryer that powers the dryer looks like this. 

Set your meter selector to 400 volts AC. Put one probe into the "A" slot. Do not touch the other probe, but insert it into the "B" slot. The fit may not be tight. You may need to wiggle the probes to touch the metal inside and get a reading on the meter. The meter should show 230 volts. "C" is the neutral wire. "D" is the ground wire. Place a probe into "A" and the other probe into "C" or "D" and the reading on the meter should be 115 volts. The same should be true of a reading between "B" and "C" or "D." If you do not get these readings, check to be sure one circuit breaker or one fuse is not blown. There is the possibility that the dryer's heating element could be burned out, but that is not as likely. You can access it from the back of the dryer. Remove a cover over its terminals. Be sure the power to the dryer is disconnected. Use an Ohms setting on your meter and check for an open circuit. Testing an oven element in your stove is very similar. Remove the screws that hold the element in place and pull it from the oven. Do a resistance check on the two terminals.

(The photo is from Bing Images.)


STEP 9: Electrical Outlets

Sometimes you need to check an electrical outlet, or replace it. See the text boxes in the photo. Set the meter to 400 volts AC. Place a probe in the "hot" slot and another in the neutral slot.  The meter should read about 120 volts. Place a probe in the "hot" slot and in the ground slot. The meter should read 120 volts. Place a probe in the neutral slot and in the ground slot. The meter should read zero volts. Check outlets with your voltmeter before removing the cover and beginning to work on them. You want to be certain the power is "off."

STEP 10: Cords and Other Things

I have added alligator clip attachments to the probe ends on my meter. They are a very handy accessory I got at Radio Shack. They are like an extra hand. 

This toaster works well, and the meter shows a resistance reading due to the heating element inside the toaster. This is normal and good. This test could indicate there is a break in the circuit within the toaster. Further testing would be necessary to determine which part of the circuit is defective. Then a decision would need to be made as to whether the appliance can be repaired and whether it is worth the effort.

Whether it is a toaster, or a phone charger, or a power cord for a computer; cords often fray internally within an inch or two of the plug. This is very understandable. That is the area of the cord that is frequently flexed back and forth. If something, like a phone charger, works some of the time, but not at other times; attach the meter with a resistance scale setting. Gently flex the cord back and forth near the plug end. Make fairly sharp bends. Watch the meter reading to see if it fluctuates between a normal reading and no connection. If it does, ask someone with a soldering iron to cut the cord back and reattach the plug end for you. 


STEP 11: Lightning and Your Telephone

This is an illustration of what is possible with a meter.  It is not intended that most users would ever do this. Yet, many on Instructables experiment with LEDs (light emitting diodes), and it would pertain to that.

During the 1980s I was the pastor of a church in a rural setting. Lightning sometimes struck the utility company's power distribution lines and jumped to telephone lines running into our building. Once our telephone would not work. Twice the phone answering machine would not work. I was able to use my meter to rescue the telephone. I was also able to rescue the answering machine once, but not the second time. After the second strike we added a surge protector and had no problems after that.

See the first photo. The selector is set to the diode checker. Diodes are one way electrical valves and are very sensitive to surges of electrical current, especially with things like lightning. The arrow with a line across the arrow point is the standard symbol for a diode. Not every meter has a diode checker setting. Because diodes are very sensitive to current overloads, the diode checker limits the current in amperes that flows through a diode while testing it.

The second photo shows the circuit board from a telephone. The yellow text box identifies a bank of four diodes. Although diodes can come in many sizes and shapes, those commonly used on circuit boards like this one are small black cylinders about 5/16 inch long and about 5/32 inch in diameter. At one end is a gray band. A wire runs out of each end of the diode.

You may notice the probes do not look anything like the probes you have seen before.  This is another accessory I got at Radio Shack. It is a set of clip on probes designed to grasp the small wires of electronic parts to make getting an accurate reading easier.

When testing a diode, you are looking for a relatively high current reading when the red and black leads are attached one way, but a relatively lower reading when the connections are reversed. Note that the red probe is above the black probe in this photo and the reading is 1.585.  See the third photo. The black probe is now above the red probe and the reading is one-third the previous reading, which is considerably lower. These readings are the sign of a good diode.  

Often a diode can be checked without removing it from the circuit. Sometimes the readings are confusing. Chances are current is feeding through some other electronic component to cause an undependable reading. Then it becomes necessary to desolder one of the diode leads to isolate it from the circuit for accurate readings. 

In the lightning incident I mentioned, there were only a couple of diodes. One of them failed its test. For less than a dollar I was able to replace the defective diode and the phone was good ever after. At the time a new phone was about $20.

See the fourth photo. It is a Maglite flashlight that now has one of their LED bulbs. It quit working and I needed to know if the LED was still good or not. I did a diode check with my meter and discovered the switch was the problem.




STEP 12: Reading Amps. (current Draw)

Although often used interchangeably in this Instructable, and wrongly so, "current" and "voltage" are actually different from one another. Voltage concerns the pressure at which electrons flow, like water pressure in a pipe.  Current (amps. or amperes) deals with the volume of electrons flowing at the operating voltage. A device may appear to work, but makes an unusual noise or quickly overheats. A check of the amps. drawn by the circuit can tell you if there is a problem, even though it will not identify the exact problem.  

First, check the device specifications.  Look for a plate or label on the back or bottom of the device. It may tell you the device is designed to draw (for example) 2.3 amps. at 120 volts. Or, it may tell you the device uses 276 Watts at 120 volts. (Watts equals volts multiplied by amps., so divide Watts by volts to determine the proper amps.) If this device were found to draw (for example) 4.5 amps., you would know immediately something is wrong.

Reading amps. is different from reading voltages. Voltage readings are the drop in electrical "pressure" across two points in a circuit, or a whole circuit. The meter is not part of the circuit, but reads what happens across or between two points in the circuit.  When reading amps, the meter must become a link in the circuit, just like a link in a chain. See the graphic showing how you can make a sandwich with two conductors and a piece of plastic between them. This sandwich can be placed between two batteries in your device to see what the current draw is. The alternative is to break the circuit by cutting a conductor and connecting the meter to the ends of the cut conductor. You would need to reconnect the cut connector when you are finished. Set the selector for DC amps in the desired range.

You may need to change the holes into which the probes connect on the meter. See the second photo.

STEP 13: Shocking, Simply Shocking!

My father had a small electrical business when I was in high school.  I was often his helper. Many of his customers lived on farms. A frequent complaint was a tingle (mild electrical shock) when taking a shower bath. Invariably, there had been a lightning strike nearby recently, and the lightning surge had shorted an electric water heater element to ground through the water inside the water heater tank. Turn off the power to the water heater at the circuit breaker. Remove the cover plates over the heater elements and pull the fiberglass insulation back. Disconnect the wire from one of the terminal screws on the heater element to isolate it from any possible feedback through another part of the circuit. This is to avoid false readings. Set the Ohms scale to a high range. Look for this symbol: Ω to identify the Ohms or resistance scale. Touch one probe to one of the heater element terminal screws. Touch the other probe to bare metal on the side of the water heater tank. If the element is not shorted to the water inside the tank, the meter reading should indicate an infinite resistance (no current flow, an open circuit).    

A few years ago we had a neighbor who avoided having grandchildren visit because anyone who touched the built-in kitchen stove received a mild electrical shock. I set my meter to an AC voltage setting in the 150 volt range and placed one probe on the chrome oven handle and one probe on a sink faucet. My meter told me the electrical current registered about 40 volts AC. It took me some time, guess work, and checking; but I found someone had disconnected the thin green wire that connects the metal frame of the stove to that home's grounding circuit. When I reconnected the wire, the stray voltage disappeared. The green ground wire was located on the back of the oven.

STEP 14: Another Use From the Past

The person to whom this Instructable is geared will not likely do this, but it is an example of yet another helpful use for a multi-meter. We parked our car in a store parking lot. When we left the store, it would not start. The battery had failed because the battery post had become disconnected from the internal circuitry of the battery. When I installed a new battery there were immediate signals that all was not well with the car's charging system. I did some reading in my auto manuals. I learned a poor battery connection can cause the rotating field of the alternator to burn out. The resistance of the field coil (rotor coil here) should be 1.5 Ohms. That is tiny. I set my meter for a very low Ohms reading, touched the probes to the slip rings, and found there was far less than 1.5 Ohms of resistance. The wires in the rotor coil had burned their insulation and shorted. This did not save any money, but it saved time for me. Suddenly I knew what the problem was and knew what to do to fix it. I also needed a new alternator. Without a good multi-meter, I would have only continued to guess about the problem.

(The photo is from Bing Images.)

STEP 15: Auto Ranging Meters and Reading the Meter

It is easy to forget to set the meter to the right range for the type of reading you will be making. With an analog (needle indicator) meter, that could be fatal to the meter. Some digital meters are "auto-ranging." That means the meter automatically makes the right setting. My meter has circuit protections built into the meter. Part of this is two fuses designed to "blow" before the circuitry can be harmed. I try to keep extra of these fuses on hand, just in case. See step 16 for a photo with the location of the fuses.

On my meter the digit "3" indicates an open circuit (= no path for electrical current). If I am using the Ohms (resistance) scale, the digit "3" appears until I attach the probes to the device I am testing. Sometimes the digit "3" remains when attached to a device known to be good. There should be an actual reading, but the reason there is not is that I have the meter set to an incorrect range. The device I am checking may have (for example) a resistance value of 12,500 ohms. If the meter is set to a range too low, perhaps to the 4K range, the digit "3" will appear on the display. If I move the selector to the 40K range the meter will suddenly give the reading I am seeking. I try to remember to begin at a very high range that may not give me as many numbers in the reading as I hope to see. Then I move the selector to lower range settings until I see the number of digits in the reading for the accuracy I need.

STEP 16: Accessories and Features

I have already mentioned two accessories available for my meter: insulated alligator clips and spring clips for grasping electronics component wires. The photo shows a telephone pigtail that makes connecting to the telephone lines for a voltage check easy. I used my alligator clips to connect to the red and green wires on the pigtail. If all is well, the voltmeter should read about 50 volts DC. See my earlier Instructable. This can be a big help when you are reporting a service outage. The pigtail has two other conductors. I taped them so they would not touch anything and create a short. Note: 50 volts DC is low enough that you can touch the bare wires without a shock. Still, do not stand in water when doing this. Water multiplies the danger.

Sometimes you need an extra hand. Multi-meters come with a fold out stand on the back of the meter. These usually can also be flipped up to function as a hanger for the meter. This frees both hands for manipulating the probes, especially if the voltages could harm someone.

See the text box in the photo for details on the Hold button. Sometimes you may be able to reach terminals with the probes, but may not be able to read the meter. If you can manage to press the Hold button and release it, the meter will freeze the reading so you can move and see what the meter recorded.

STEP 17: User Serviceable Things

Very little on a multi-meter requires attention. There is a door or plate on the back that opens by removing a few small screws or with a snap that can be opened with a fingernail. Inside are the batteries that power the circuits in the meter. There may also be some fuses. Very cheap meters may not have fuse protection.

When the batteries grow weak there may be a weak battery indicator on the display screen. You will notice the display numbers grow more weak and difficult to see unless viewed at just the right angle. If the meter will not be used for very long periods of time, it is a good idea to remove the batteries so they do not begin to leak and ruin the metal tabs in the battery compartment. This meter uses three AA batteries. Many meters use one 9 volt battery. Notice that this meter has two fuses. One is a fast blow fuse designed to protect the meter from the wrong setting on the meter's selector switch. I have a few extra fuses in a small plastic bag. The bag fits into the battery compartment. Notice that the fuse specifications are also molded into the plastic case.

STEP 18: Additional Resources

If you want even more ideas for how to use a multi-meter to solve problems at home, get a copy of this book. A similar book appeared after this one. I bought this about 20 years ago and it is very helpful, although it tends to go into a next level beyond this Instructable with more applications and more detailed tests. And, a new edition of this book is available again at Radio Shack stores. 

Do not be cavalier when working with electricity. Take many precautions. Check and double check to be certain a circuit is not live. Many important measurements that tell you about the health of a device can be made without power to the circuit, other  than the small batteries inside your meter. Using a multi-meter can help you fix problems safely and quickly without waiting for an expensive service call by a technician. 

197 Comments

Can you use an automotive multimeter to check the heating elements on a hot water tank
I am not certain I know what an automotive multimeter is. I assume it can read lower DC voltages, but not AC voltages. Can it read Ohms? If so it can be used to check water heater elements. If it reads only DC voltages, you could add a 9 volt battery to the circuit and use it as a continuity tester. A good element would show a voltage reading, but a bad element would show no current flow. You may also want to check for current flow between terminal screws and ground.
I have looked at A LOT of articles about multimeters and found most of them to be of little or no help in helping me know how to use my multimeter. This is not true of YOUR article. I found EXACTLY what I needed in your article, as well as some things I didn't know I could do with a multimeter. Thank you very much for submitting your article and sharing your knowledge!
Thank you for looking and for commenting. Multimeters can be very useful to someone in an average household setting. I tried to present helpful things from my own experience.
Phil, I read your great article and probably missed it but have a question about how to use a multimeter for a specific application. I ran three underground wires to my patio, all of which are 12-3. I now realize that I did not label them at one end- of course the end coming into the house. How can I use the meter to determine which is which?
I should have included this in the Instructable. Get ahold of a spool of light plastic covered wire around 18 to 22 gauge in size. The spool should contain enough wire to reach both ends of your underground run. Connect one end of the light gauge wire to one of the #12 conductors with no power in the circuit. Go to the other end of your run and set your meter to a range around 2,000 Ohms. Connect one meter lead to the light gauge wire. Touch each of the #12 wires with the other lead and notice which #12 wire indicates a pathway for electricity. Repeat this process with at least one of the other #12 wires. The third will be identified by default after the others have been identified. The Continuity setting on a meter would seem ideal for this, but that setting does not work if more than around 300 Ohms is present in the run, and you can easily get a faulty indication. I have solved several problems this way.
Phil, thanks so much for the quick and detailed reply. It worked! I happen to have a large spool of wire and it was easy to do- following your directions.
I've bookmarked your article to refer back to for future reference. THANK YOU so much for you efforts!
Kevin
Kevin,

Thank you for your report back. A multi-meter is a very handy thing to have. Most of the time you will use it for very basic things. But, it will help you find problems and get things working again. Often those will save you lots of money compared to calling a technician for a service call. Plus, you can be functioning again in a couple of hours rather than waiting days for someone to come.
By the way, another test you could have done involves one of those non-contact voltage testers (NCVT). You could connect one of your #12 wires to a known hot wire carrying 120 volts. Then use the NCVT to see which of your wires is hot at the other end. Because you are dealing with hot wires, you would need to take some precautions.
In another Instructable I mentioned that I bought a good brand name NCVT, but using it is a pain. I bought a cheapie NCVT and lowered the value of the resistor that is its antenna to get better sensitivity, and it works great. Some warned me it is no longer safe for testing 440 volt wires, but I do not do that, anyway.
Thanks for that new info Phil. Ironically, I went to instructables specifically because I didn't want to pay one of those virtual servicemen apps. Why pay for what you can get for free.
Thanks again,
Kevin
My multimeter died. One I had made back in college in the early '70's. There must be a descent, good quality, meter that you could recommend for around $50. Do you know anything about "Greenlee"? I had one but lost it when I moved. Didn't even get a chance to use it! Any input would be greatly appreciated. Darrell
I suppose much depends on your requirements. Do you need something with the quality of a FLUKE? My needs are rather simple lately. I have been using the little $15 meters from Harbor Freight. Often there has been a coupon in the Sunday paper that gives you one free with any purchase, although those coupons are more infrequent lately. (I am assuming you are in the USA.) Those little Harbor Freight meters have AC and DC voltage, Ohms, current from milliamps. up to 10 Amps., diode check, 1.5 and 9 volt battery check, and a transistor tester. Often all I need is to know if voltage in an approximate range is present, if a diode conducts in one direction but not in the other, and the value of a resistor within a normal percentage range of error. I have sometimes gotten a more accurate reading from one of these little meters than from my more expensive Radio Shack meter. But, there is no continuity chime. I do not know what the input impedance is, which becomes important for some checks so the readings are not skewed by the meter circuitry, itself, becoming part of the test.
There were more options before Radio Shack went out of business. Still, there should be some good choices on-line. Like the little Harbor Freight meter, I expect most of what you find will have been made in the Pacific Rim.
My father did electrical work 50 years ago and I was often his helper. Greenlee was a quality maker of tools for bending conduit and making holes in steel electrical boxes for conduit attachments. It appears they have branched out to a wider variety of tools. I cannot tell you if Greenlee makes meters now, or has them made and branded to Greenlee specifications. In the 1960s they were a top notch company.
Correction: the Harbor Freight meter does not have capacitance.
Please send a link to diy multi meter with led light
I am confused. Did I mention an LED meter? I know I have seen LED voltmeters, but they give you a voltage range, like greater than 120 VAC, greater than 240 VAC, and greater than 440 VAC. They do not give a precise reading like 117 volts. But, those meters are only for voltages. I have not seen any that give readings for current, resistance, and the other functions on a multimeter.
I did a couple of quick searches and found hits for VU meters, but no DIY electrical circuit meters.
First Phil: You go tmy thumbs up. Good article and I agree - Everyone needs a multimeter, even a cheap one like the unit you linked, but their are better options available for the same price (see below)

For anyone looking for the low end cheap multimeter I would take a look at this new model, as it is very similar to the Harbor Freight cheap multimeter linked in the instructable, but it is a new version by another brand with color coded functions, additional functions, and a real english manual which is a lot for a $6 multimeter
Thank you for looking and for commenting. Since posting this, I have watched coupons in Harbor Freight Tool advertisements and often found these meters free with a purchase. I have gotten a few, mostly to give to friends who did not have a meter. I showed them how to test batteries. I showed them how to check for power in an outlet, but told them not to do it if they do not feel safe.

Helpful tip! I have my own multimeter which I am very satisfied with just don't know how to use, this is a good read. I bought the unit at www.gainexpress.com and used the code 10SPECIAL to avail 10% off.

Incredibly helpful...thanks!

Thank you for your comment. I am glad it is useful to you. A multimeter can save the owner a lot of money quickly. Also, you can use a multimeter with benefit for things where you feel safe and comfortable. When you get to something that makes you nervous, call in someone with more knowledge and experience.

Thanks for your great article friend, i get new information, new ideas to do somethings, i hope you will share again, i keep waiting for next post, thanks. http://goo.gl/3hWprI

More Comments