Introduction: ARDUINO SOLAR CHARGE CONTROLLER ( Version 2.0)

Tech Contest

Runner Up in the
Tech Contest

Microcontroller Contest

Runner Up in the
Microcontroller Contest

[ Play Video ]

One year ago, I began building my own solar system to provide power for my village house.Initially I made a LM317 based charge controller and an Energy meter for monitoring the system.Finally I made PWM charge controller.In April-2014 I posted my PWM solar charge controller designs on the web,it became very popular. Lots of people all over the world have built their own. So many students have made it for their college project by taking help from me.I got several mails every day from people with questions regarding hardware and software modification for different rated solar panel and battery. A very large percentage of the emails are regarding the modification of charge controller for a 12Volt solar system.
You can see my other version charge controllers


To solve this problem I made this new version charge controller so that any one can use it without changing the hardware and software. I combine both the energy meter and charge controller in this design.

Specification of version-2 charge controller :

1.Charge controller as well energy meter

2. Automatic Battery Voltage Selection (6V/12V)

3.PWM charging algorithm with auto charge set point according to the battery voltage

4.LED indication for the state of charge and load status

5. 20x4 character LCD display for displaying voltages,current,power,energy and temperature.

6.Lightning protection

7.Reverse current flow protection

8.Short Circuit and Over load protection

9. Temperature Compensation for Charging

Electrical specifications :

1.Rated Voltage= 6v /12V

2.Maximum current = 10A

3.Maximum load current =10A

4.Open Circuit Voltage = 8-11V for 6V system /15 -25V for 12V system

Step 1: Parts and Tools Required :


1.Arduino Nano (Amazon / eBay)

2.P-MOSFET ( Amazon / IRF 9540 x2 )

3.Power diode ( Amazon / MBR 2045 for 10A and IN5402 for 2A)

4.Buck Converter ( Amazon / eBay) or Voltage Regulator (LM7805)

5.Temperature Sensor( Amazon / LM35)

6.Current Sensor ( Amazon / ACS712)

7.TVS diode ( Amazon / P6KE36CA)

8.Transistors ( 2N3904 or 2N2222)

9.Resistors( 100k x 2, 20k x 2,10k x 2,1k x 2, 330ohm x 5)

10.Ceramic Capacitors (0.1uF x 2)

11.Electrolytic Capacitors ( 100uF and 10uF)

12. 20x4 I2C LCD ( Amazon / eBay)

13.RGB LED ( Amazon / ebay)

14.Bi Color LED ( Amazon )

15.Jumper Wires/Wires(eBay)

16.Header Pins (Male,Female and right angle)

17.Heat Sink ( Amazon / eBay)

18.Fuse Holder and fuses ( Amazon / eBay)

19.Push Button ( Amazon )

20.Perforated Board (Amazon / eBay)

21.Project Enclosure

22.Screw terminals ( 3x 2pin and 1x6 pin)


24.Plastic Base

Tools :

1.Soldering Iron ( Amazon )

2.Wire Cutter and Stripper ( Amazon )

3.Screw Driver ( Amazon )

4.Cordless Drill ( Amazon )

5.Dremel ( Amazon )

6.Glue Gun ( Amazon )

7.Hobby Knife ( Amazon )

Step 2: How the Charge Controller Works :

The heart of of the charge controller is Arduino nano board.The arduino MCU senses the solar panel and battery voltages.According to this voltages it decides how to charge the battery and control the load.

The amount of charging current is determined by difference between battery voltage and charge set point voltages. The controller uses two stages charging algorithm.According to the charging algorithm it gives a fixed frequency PWM signal to the solar panel side p-MOSFET. The frequency of PWM signal is 490.20Hz(default frequency for pin-3). The duty cycle 0-100% is adjusted by the error signal.

The controller gives HIGH or LOW command to the load side p-MOSFET according to the dusk/dawn and battery voltage.

The full schematic is attached bellow.

Step 3: Main Functions of Solar Charge Controller:

The charge controller is designed by taking care of the following points.

1.Prevent Battery Overcharge: To limit the energy supplied to the battery by the solar panel when the battery becomes fully charged.This is implemented in charge_cycle() of my code.

2.Prevent Battery Over discharge: To disconnect the battery from electrical loads when the battery reaches low state of charge.This is implemented in load_control() of my code.

3.Provide Load Control Functions: To automatically connect and disconnect an electrical load at a specified time. The load will ON when sunset and OFF when sunrise.This is implemented in load_control() of my code.

4.Monitoring Power and Energy : To monitor the load power and energy and display it.

5.Protect from abnormal Condition: To protect the circuit from different abnormal situation like lightening,over voltage,over current and short circuit etc.

6.Indicating and Displaying: To indicate and display the various parameters

7.Serial Communication: To print various parameters in serial monitor

Step 4: Sensing Voltages,Current and Temperature :

1.Voltage Sensor:

The voltage sensors are used to sense the voltage of solar panel and battery.It is implemented by using two voltage divider circuits.It consists of two resistors R1=100k and R2=20k for sensing the solar panel voltage ans similarly R3=100k and R4=20k for battery voltage.The out put from the R1and R2 is connected to arduino analog pin A0 and out put from the R3 and R4 is connected to arduino analog pin A1.

2.Current Sensor :

The current sensor is used for measuring the load current.later this current is used to calculate the load power and energy.I used a hall effect current sensor (ACS712-20A)

3.Temperature Sensor :

The temperature sensor is used to sense the room temperature. I used LM35 temperature sensor which is rated for −55°C to +150°C Range.

Why Temperature monitoring is Required ?

The battery’s chemical reactions change with temperature.As the battery gets warmer, the gassing increases. As the battery gets colder,it becomes more resistant to charging. Depending on how much the battery temperature varies, it is important to adjust the charging for temperature changes.So it is important to adjust charging to account for the temperature effects. The temperature sensor will measure the battery temperature, and the Solar Charge Controller uses this input to adjust the charge set point as required.The compensation value is - 5mv /degC/cell for lead acid type batteries.(–30mV/ºC for 12V and 15mV/ºC for 6V battery).The negative sign of temperature compensation indicates,increase in temperature require a reduction in charge set point.

For more details on Understanding and Optimizing Battery Temperature Compensation

Step 5: Sensors Callibration

Voltage Sensors :

5V = ADC count 1024

1 ADC count = (5/1024)Volt= 0.0048828Volt


Vin = Vout*(R1+R2)/R2 R1=100 and R2=20

Vin= ADC count*0.00488*(120/20) Volt

Current Sensor:

As per seller information for ACS 712 current sensor

Sensitivity is =100mV / A =0.100V/A

No test current through the output voltage is VCC / 2= 2.5

ADC count= 1024/5*Vin and Vin=2.5+0.100*I (where I=current)

ADC count= 204.8(2.5+0.1*I) =512+20.48*I

=> 20.48*I = (ADC count-512)

=> I =(ADC count/20.48)- 512/20.48

Current (I) =0.04882*ADC -25

More details on ACS712

Temperature Sensor :

As per data sheet of LM35

Sensitivity=10 mV/°C

Temp in deg C =(5/1024)*ADC count*100

Note : The sensors are calibrated by assuming the arduino Vcc= 5V reference.But in practical it is not 5V always.So there may be chance of getting wrong value from the actual value.It can be solved by following way.

Measure the voltage between arduino 5V and GND by a multimeter.Use this voltage instead of 5V for Vcc in your code.Hit and try to edit this value until it matches the actual value.

Example: I got 4.47V instead of 5V.So the change should be 4.47/1024=0.0043652 instead of 0.0048828.

Step 6: Charging Algorithm

1.Bulk :At this mode, a preset maximum constant amount of current (amps) is fed into the battery as no PWM is present. As the battery is being charged up , the voltage of the battery increases gradually

2. Absorption: When the battery reaches the bulk charge set voltage, the PWM begins to hold the voltage constant. This is to avoid over-heating and over-gassing the battery. The current will taper down to safe levels as the battery becomes more fully charged.
3. Float: When the battery is fully recharged, the charging voltage is reduced to prevent further heating or gassing of the battery

This is the ideal charging procedure.

The present charge cycle block of code is not implements 3 stages charging.I use a easier logic in 2 stages.It works good.

I am trying the following logic for implementing the 3 stages charging.

Future Planning for Charging Cycle :

The bulk charge begins when solar panel voltage is larger than battery voltage. When the battery voltage reaches 14.4V, absorption charge will be entered. The charging current will be regulated by PWM signal to maintain the battery voltage at 14.4V for one hour. Float charge will then enter after one hour. The float stage generates a trickle charge to keep the battery voltage at 13.6V. When the battery voltage falls below 13.6V for 10mins, the charging cycle will be repeated.

I request community members to help me for writing the piece of code to implement the above logic.

Step 7: Load Control

To automatically connect and disconnect the load by monitoring dusk/dawn and battery voltage,load control is used.

The primary purpose of load control is to disconnect the load from battery to protect it from deep discharging. Deep discharging could damage the battery.

The DC load terminal is designed for low power DC load such as street light.

The PV panel itself is used as the light sensor.

Assuming solar panel voltage >5V means dawn and when < 5V dusk.

ON Condition:

In the evening, when the PV voltage level falls bellow 5V and battery voltage is higher than LVD setting, the controller will turn on the load and the load green led will glow.

OFF Condition:

The load will cut off in the following two condition.

1.In the morning when the PV voltage is larger than 5v,

2.When the battery voltage is lower than the LVD setting

The load red led ON indicates that load is cut off.

LVD is refers to Low Voltage Disconnect

Step 8: Power and Energy

Power :

Power is product of voltage (volt) and current (Amp)


Unit of power is Watt or KW


Energy is product of power (watt) and time (Hour)

E= Pxt

Unit of Energy is Watt Hour or Kilowatt Hour (kWh)

To monitor the load power and energy above logic is implemented in software and the parameters are displayed in a 20x4 char LCD.

Step 9: Protection

1.Reverse polarity protection for solar panel

2. Overcharge protection

3. Deep discharge protection

4. Short circuit and Overload protection

5.Reverse current protection at night

6.Over voltage protection at solar panel input

For reverse polarity and reverse current flow protection I used a power diode (MBR2045).Power diode is used to handle large amount of current.In my earlier design I used a normal diode(IN4007).

Overcharge and Deep discharge protection is implemented by the software.

Over current and overload protection is implemented by using two fuses ( one at the solar panel side and other at load side).

Temporary over voltages occur in power systems for a variety of reasons, but lightning causes the most severe over voltages. This is particularly true with PV systems due to the exposed locations and system connecting cables.In this new design I used a 600 watt bidirectional TVS diode (P6KE36CA ) to suppress the lightning and over voltage at the PV terminals.In my earlier design I used a zeener diode.You can also use a similar TVS diode on the load side.

For selection guide of TVS diode click here

For choosing a right part no for TVS diode click here

Step 10: LED Indication

Battery State Of Charge (SOC) LED:

One important parameter that defines the energy content of the battery is the State of Charge (SOC). This parameter indicates how much charge is available in the battery

A RGB LED is used to indicate the battery state of charge.For connection refer the above schematic

Battery LED ------------>Battery Status

RED --------------------> Voltage is LOW

GREEN --------------------> Voltage is Healthy

BLUE --------------------> Fully Charged

Load LED :

A bi color (red/green) led is used for load status indication.Refer the above schematic for connection.

Load LED --------------------->Load Status

GREEN -------------------------> Connected (ON)

RED ---------------------------> Disconnected (OFF)

I include a third led for indicating the solar panel status.

Step 11: LCD Display

To display the voltage,current,power,energy and temperature a 20x4 I2C LCD is used.If you do not want to display the parameter then disable the lcd_display() from the void loop() function.After disable you have indication led to monitor the battery and load status.

You can refer this instructable for I2C LCD

Download the LiquidCrystal _I2C library from here

Note : In code you have to change the I2C module address.You can use the address scanner code given in the link.

Step 12: Bread Board Testing

It is always a good idea to test your circuit on a breadboard before soldering it together.

After connecting everything upload the code.The code is attached bellow.

The entire software is broken into small functional block for flexibility.Suppose the user is not interested to use a lcd display and happy with the led indication .Then just disable the lcd_display() from the void loop().Thats all.

Similarly according to the user requirement he can enable and disable the various functionality.

Download the code from my GitHub Account


Step 13: Power Supply and Terminals :

Terminals :

Add 3 screw terminals for solar input,battery and load terminal connections.Then solder it.I used the middle screw terminal for battery connection,left to it is for solar panel and the right one is for load.

Power Supply:

In my previous version the power supply for arduino was provided by a 9V battery.In this version the power is taken from the charging battery itself.The battery voltage is step down to 5V by a voltage regulator(LM7805).

Solder LM7805 voltage regulator near to the battery terminal.Then solder the electrolytic capacitors as per schematic.At this stage connect the battery to the screw terminal and check the voltage between pin 2 and 3 of LM7805.It should be near to 5V.

When I used a 6V battery the LM7805 works perfectly.But for 12V battery it heated up after some time.So I request to use a heat sink for it.

Efficient Power supply :

After few testing I found that the voltage regulator LM7805 is not the best way to power the arduino as it waste lots of power in the form heat.So I decide to change it by a DC DC buck converter which is highly efficient.If you plan to make this controller, I advice to use a buck converter rather than LM7805 voltage regulator.

Buck Converter Connection:

IN+ -------> BAT+

IN- --------> BAT-

OUT+ -----> 5V

OUT- -----> GND

Refer the above pictures.

You can buy it from eBay

Step 14: Mount the Arduino :

Cut 2 female header strips of 15 pins each.Place the nano board for reference.Insert the two headers according to the nano pin.Check it whether the nano board is perfect to fit into it.Then solder it back side.

Insert two rows of male header on both sides of nano borad for external connections.Then join the solder points between arduino pin and header pins.See the above picture.

Initially I forgot to add Vcc and GND headers.At this stage you can put headers with 4 to 5 pins for Vcc and GND.

As you can see I connected the voltage regulator 5V and GND to the nano 5V and GND by red and black wire.Later I removed it and soldered at the back side for better look of the board.

Step 15: Solder the Components

Before soldering the components make holes at corners for mounting.

Solder all the components as per schematic.

Apply heat sink to two MOSFETs as well as power diode.

Note: The power diode MBR2045 have two anode and one cathode.So short the two anode.

I used thick wire for power lines and ground and thin wires for signal.signal. Thick wire is mandatory as the controller is designed for higher current.

Step 16: Connect the Current Sensor

After connecting all the components solder two thick wire to the load mosfet's drain and upper terminal of load side fuse holder.Then connect these wires to the screw terminal provided in current sensor( ACS 712).

Step 17: Make the Indication and Temperature Sensor Panel

I have shown two led in my schematic.But I added a third led(bi color) for indicating the solar panel status in future.

Prepare small size perforated board as shown.Then make two holes (3.5mm) by drill on left and right( for mounting).

Insert the leds and solder it to the back side of the board.

Insert a 3 pins female header for temperature sensor and then solder it.

Solder 10 pins right angle header for external connection.

Now connect the RGB led anode terminal to the temperature sensor Vcc(pin-1).

Solder the cathode terminals of two bi color led.

Then join the solder points the leds terminal to the headers.You can paste a sticker with pin name for easy identifications.

Step 18: ​Connections for Charge Controller

Connect the Charge Controller to the Battery first, because this allows the Charge Controller to get calibrated to whether it is 6V or 12V system. Connect the negative terminal first and then positive. Connect the solar panel(negative first and then positive) At last connect the load.

The charge controller load terminal is suitable for only DC load.

How to run an AC Load ?

If you want to run AC appliances then you must need an inverter. Connect the inverter directly to the battery.See the above picture.

Step 19: Final Testing :

After making the main board and indication board connect the header with jumper wires(female-female)

Refer the schematic during this connection.Wrong connection may damage the circuits.So be care full in this stage.

Plug the usb cable to the arduino and then upload the code.Remove the usb cable.If you want to see the serial monitor then keep it connected.

Fuse Rating: In demo I have put a 5A fuse in the fuse holder.But in practical use, put a fuse with 120 to 125% of short circuit current.

Example :A 100W solar panel having Isc=6.32A needs a fuse 6.32x1.25 = 7.9 or 8A

How to test ?

I used a buck boost converter and black cloth to test the controller.The converter input terminals are connected to battery and the output is connected to the charge controller battery terminal.

Battery status :

Rotate the converter potentiometer by a screw driver to simulate different battery voltages.As the battery voltages change the corresponding led will turn off and turn on.

Note: During this process Solar panel should be disconnected or covered with a black cloth or card board.

Dawn/Dusk : To simulate dawn and dusk use a black cloth.

Night : Cover the solar panel entirely.

Day: Remove the cloth from the solar panel.

Transition : slow the remove or cover the cloth to adjust different solar panel voltages.

Load Control : According to the battery condition and dawn/dusk situation the load will turn on and off.

Temperature Compensation :

Hold the temperature sensor to increase the temperature and place any cold things like ice to decrease the temp.It will be immediately displayed on the LCD.

The compensated charge set point value can be seen on the serial monitor.

In the next step onward I will describe the making of enclosure for this charge controller.

Step 20: Mounting the Main Board:

Place the main board inside the enclosure.Mark the hole position by a pencil.

Then apply hot glue to the marking position.

Place the plastic base over the glue.

Then place the board over the base and screw the nuts.

Step 21: Make Space for LCD:

Mark the LCD size on the front cover of the enclosure.

Cut out the marked portion by using a dremel or any other cutting tool.After cutting finish it by using a hobby knife.

Step 22: Drill Holes:

Drill holes for mounting the LCD,Led indication panel,Reset button and external terminals

Step 23: Mount Everything:

After making holes mount the panels, 6 pin screw terminal and reset button.

Step 24: Connect the External 6 Pin Terminal :

For connecting the solar panel,battery and load a external 6pin screw terminal is used.

Connect the external terminal to the corresponding terminal of the main board.

Step 25: Connect the LCD, Indicator Panel and Reset Button :

Connect the indicator panel and LCD to the main board as per schematic.(Use female-female jumper wires)

One terminal of the reset button goes to RST of Arduino and other goes to GND.

After all connections.Close the front cover and screw it.

Step 26: Ideas and Planning

How to plot real time graphs ?

It is very interesting, if you can plot the serial monitor parameters (like battery and solar voltages) on a graph on your laptop screen.It can be done very easily, if you know little bit on Processing.

To know more you can refer Arduino and Processing ( Graph Example ).

How to save that data ?

This can be done easily by using SD card but this include more complexity and cost.To solve this I searched through internet and found a easy solution.You can save data in Excel sheets.

For details you can refer seeing-sensors-how-to-visualize-and-save-arduino-sensed-data

The above pictures downloaded from web.I attached to understand what I want to do and what you can do.

Future Planning :

1. Remote data logging via Ethernet or WiFi.

2. More powerful charging algorithm and load control

3.Adding a USB charging point for smart phone/tablets

Hope you enjoy my instructables.

Please suggest any improvements.Raise a comments if any mistakes or errors.

Follow me for more updates and new interesting projects.

Thanks :)

12 People Made This Project!


  • Spotless Contest

    Spotless Contest
  • Science of Cooking

    Science of Cooking
  • Microcontroller Contest

    Microcontroller Contest

We have a be nice policy.
Please be positive and constructive.


16 Questions

hi sir, i got the problem with the circuit. When i connect the circuit, i already got 2-5v and i do not know where it come from. I connect my circuit with the battery, then i got higher than measurement using multimeter. Please help sir.tq


hi sir,

I have a problem with the connection in breadboard. I found that my current sensor display wrong value for the current although there is no load is connected. what is the solution for my problem? tq


Hi محمدح25 , It looks to me as if the current sensor ACS712 is not connected properly. I suggest you check whether the +5V and GND are there (measure the voltages with your multimeter) and also whether there is 2.5V on pin A2 of your Arduino when there is no current flowing.

Why is it that we use a PMOS? Can we not just use an NMOS with an opposite logic in the software? Also, if we do use a PMOS how do we get a negative voltage applied because PMOS logic requires negative voltage correct? My "switches" (ie IRF9540 PMOS's) are not switching and I dont know why. I followed the circuit diagram and the same logic in the code, but it is not working which is why I pose these questions. I don't quite understand why I am the only one who seems to have this problem with the IRF9540.

Hi skyler78, The most likely hypothesis I can offer is that you have put your IRF9540 in back to front, with source and drain reversed. Please check it carefully against the data sheet. However even this may not explain what you are seeing.

If you look at the circuit diagram, the connection from the solar panel comes through the fuse and D1 to the Source of Q1. Resistor R6 holds the Gate of Q1 at the same voltage as the Source, unless the bipolar transistor T1 is turned on. So with T1 off, Q1 will be off. Then the Arduino turns T1 on, its collector voltage goes to ground (nearly) and so does the gate of Q1, which then is negative with respect to the positive voltage on its Source, so it turns ON.

To answer your questions directly (that is, the question: Why is that we use a PMOS? Can we not just use an NMOS ...?) the answer is to do with the polarity of the gate voltage relative to the source of the MOSFET. With a P-channel MOSFET, and the Source connected to the solar panel voltage, it can be turned ON by bringing its Gate voltage to ground. If we had an N-channel MOSFET and the same Source connection, to turn it on we would need to raise its Gate voltage to a value higher than the solar panel voltage. This can be done but it usually involves a charge pump of some sort, to generate the above-solar-voltage. The circuit gets a lot more compliated, so using a P-channel MOSFET is simpler.

Good luck with the project and please report back, espeially if you continue to have problems.

Hi sir, i slightly got confuse about the circuit on how MBR2045 is connected. Can u provide me the complete circuit and your calculation about this circuit.TQ

Hi haffizi1995, the MBR2045 used in this project is actually MBR2045CT. It has 2 diodes, with a common cathode on pin 2 and anodes for the 2 separate diodes on pin 1 and pin 3. It is in the instructions in step 15, to connect the 2 anodes together. The anodes connect to the load side of the fuse F1 and the cathode connects to the Source of MOSFET Q1, as per the schematic diagram.

in the code what does "EP" stand for and mean?

Hi skyler78, have a look at Step 6, where there is a logic flow chart for the control of the charging pwm. You will see Ep, which is the Error Percentage, in the middle of the chart. I think you can work out from the chart how it is used.

Sir plz may tell me the rating of solar panel and battery for this circuit i have used 12v 50w solar panel nd 12v 6.75ah battery current of 2.25A due to this my current sensor burnt. I am confused in circuit diagram which is provided in thread


When you have three components in your component, IRF 9504 and MBR2045, you wonder why you have four complete products and why you need them more.

when i am connecting D3 pin of arduino to the 1 k resistance as mentioned in circuit, i am getting only 2 V across battery terminal instead of 12v what should i do. also i am getting 12 volt across source and gate of first power mosfet (MBR9540).


Hi PrakashC19, I have had a good look at your photos. It is a bit hard to be sure, but I suspect there are some wrong connections.

Also you say in your message "first power mosfet (MBR9540)". The connection from the solar panel goes from the fuse, to the power diode MBR2045, and then to the mosfet IRF9540. There is no such thing as MBR9540.

From the fuse the connection goes to the MBR2045 pins 1 and 3.

Then from the MBR2045 pin 2 the connection goes to Pin 3 of the IRF9540. Looking at the IRF9540 with the tab to the back, the source is the right-most pin.

The collector of T1 goes to the Gate, which is the left-most pin of the IRF9540.

I hope this helps. Good luck. Please post again with results of your checking.

Use 2N2222 transistor instead of N3904 you may get the results. Even I have faced the same problem when i replaced the transistor i got the results

Can i use your design for my project, but this time i need to use windmill as source of my project. If not compatible can you teach me how to do? thanks in advance.

Hi KentG26, The charger should work with a windmill just the same as for a solar panel.

Hy, I'm Giacomo from Italy

i'm tryng to realize my own solar panel regulator, so i'm very happy to compare my creature with your. THANK YOU SO MUCH FOR YOUR SHARING !!!!!!

when i'll finish i'll send you my project

Please help mi, i want to connect li-ion battery with your design. Please help me how to set max & min charging point in your code.


Li-ion battery charging algorithm is different and much more complex in comparison of Pb based batteries.
My advise is you shouldn't use that model for li-ion or maybe change many parameters.
By the way it's a good idea to put in the list of Future Planing.