Introduction: Easy Book Scanner - Low Cost, Easy to Make, 1000 Pages an Hour (Revised April 2015)

This book scanner uses simple materials and you can make it with ordinary hand tools. An electric drill, a saw and a glue gun are pretty well all you need. It also folds flat. I've put the whole scanner into a medium sized suitcase. Using it, as you'll see on the videos, is very, very light work. Just lift the light weight counter-balanced acrylic platen, turn the page, lower the platen and fire the cameras.

Some people have now made a larger version of the scanner that will scan documents like archive newspapers and ledgers. So it can easily be scaled up for scanning larger sized materials.

The video links on this page will give you an overview of the scanner and how it works.

Step 1: Parts for the Plastic Tubing Frame of the Easy Scanner


The plastic tube and fittings I used for this project are plumbing parts called overflow pipe and fittings. You will need push together tubing and fittings.

My tubing is 21.5mm in diameter, but you could use a slightly wider tubing and this might give the scanner slightly more rigidity.

The tubing and fittings are almost black in colour. Black is good, because this does not give unwanted reflections when you are making the scanning images. But if you can't get black, you could use white or grey tubing and spray it with matt black aerosol spray paint.


Ask your tubing supplier which glue to use. The glue I used is very aromatic, and you need an open window. It slightly melts the plastic, and dries very quickly indeed. So if you are at the gluing stage you have to act very fast and make sure everything is straight, because if is isn't it will be impossible to readjust after about 10 seconds! My glue was like a jelly. It came with a brush inside the container, and just required a medium smear of glue round the end of the tube just before pushing it into the L bend or Tee.

But don't glue anything until you have fitted it all together and ensured that everything fits, and nothing needs tweaking. Once it is glued you won't get it apart again.

Step 2: Drilling Out Three of the T Joints

You will need to drill out the cross-bars of three of the Tees so that they can slip on to a length of tubing. I used a flat bladed drill bit to do this. Before drilling through the cross-bar I pushed a scrap length of tube into the remaining leg of the Tee (see picture 2) so I could hold it while I was drilling.

You need to drill through the crossbar until it is open enough to push a length of tubing right through the crossbar as you can see in the fourth picture above. The Tee needs to be a fairly tight fit, but loose enough so that it can be turned on the tube passing through it.

Step 3: The Counterbalance Frame

This diagram shows the L bends and Tees and the connecting tubes that you need to make the counterbalance frame..


Start by making the top section of the frame. Take two bends and the top three tubes and glue them together. As soon as you have glued them lay this section of the frame flat against a table and press it down firmly to ensure that both the side tubes are exactly parallel. Hold it there for about 10 seconds till the glue has set.


Repeat the process using the two Tees, the crossbar tube and the other two tubes. Before glueing, assemble the top and the bottom as a single unit. Make sure that the top section tubes fit snugly into the two Tees. After gluing press the whole of the counterbalance frame against a table to ensure it is all flat and everything is straight and true. Again, hold it there for about 10 seconds till the glue has set.

Step 4: Steel Tubes and Drilling the Counterbalance Frame


Next take the two steel reinforcing tubes (shown in green). These fit into the left and right sides of the plastic tubing.

This steel tube is very light weight, made of a thin steel. The reason I have inserted these metal tubes is to prevent the counterbalance frame from sagging at either end when it is loaded with the counterbalance weights at the back, and the cameras and platen at the front. However, If you use a slightly larger diameter plastic tube, (instead of the 21.5mm tube I used), there may be sufficient rigidity in the plastic tube itself to prevent sagging without this steel reinforcement, so you may be able to leave it out.


So, insert a lightweight steel reinforcing tube into one side of the the frame.

Drill right through the plastic and steel tubing at the lower end of one of the counterbalance arms as shown in the diagram above, and place a nut and bolt right through the hole to hold the steel in position.

Insert a steel tube on the opposite side. Drill through the opposite leg of the counterbalance frame, and again insert a nut and bolt.

Next drill right through both the plastic Tees and the steel tubes. This will make the pivot holes. The drill hole should just be large enough for the steel pivot rod to pass through the hole. Test the rod for size by passing it through the drill holes.

Step 5: Making the Counterbalance Support


The counterbalance support (shown in yellow in this diagram) needs to be a snug fit astride the Counterbalance frame (shown in pale blue) that you have just made. First, slide one of the drilled out Tees on to the top bar. This will be used to support the light. Just slide the Tee on to the top bar, BUT DO NOT GLUE IT.

Fit the three counterbalance support tubes and two bends together. Make sure that they fit snugly over the Counterbalance frame. When you are sure everything fits, glue these components together, and press flat on to a table to ensure they are all parallel and true.


Next drill both legs of the Counterbalance support. Drill from the inside, and only drill through one layer of the plastic tube. Don't drill right through. The drill bit should be the same diameter as the steel pivot rod. See the diagram above.


I used a piece of 5mm steel rod. Pass the pivot rod completely through the Tees in the Counterbalance frame to leave about 2 cm protruding at either end.

Put one end of the pivot rod into one side of the Counterbalance support, and stretch the other leg of the Counterbalance support and drop it on to the other end of the pivot rod, to hold the other end of the rod.

The counterbalance frame should now move up and down freely on the pivot rod inside the legs of the Counterbalance support.

Step 6: Making the Base Frame

The base frame is straightforward to make. In addition to the longer tubes, you will need to cut six short lengths of tubing about 3.5 cm long. Two of these are to connect the bends to one another at the front, and the other four connect the Tees to the bends at the back. These short lengths of tube are shown in white on the diagrams above.

Try assembling the frame before glueing. BEFORE you glue there are two things to check out.

1. Make sure the legs of the counterbalance support (that you have just made) fit into the Tees at the back of the base. If they don't, adjust the size of the base slightly until the legs do fit. These counterbalance support legs are the only part of the framework that are NOT glued. So when you have tried them for size, you might want to mark them with a bit of sticky tape to REMIND yourself not to glue them.

2. As you glue, make sure the whole base is sitting flat on the table, so it doesn't rock later. Press it down firmly before the glue hardens. And also try and make sure the whole base frame is as square as possible.

Step 7: Finish Assembling the Framework.

When everything is glued and dry, push the legs of the counterbalance support into the Tees at the back of the base.

You should now be able to rock the counterbalance arms up and down freely. Remember DON'T glue the legs into the base. You can then remove the upper half of the scanner and the whole thing will fit flat into a suitcase for storage or transportation.

Step 8: Making the Base Board and V Shaped Book Supports

To make the base board you will need

  • The base board itself - a piece of 1 cm thick MDF or plywood measuring 45 cm x 40 cm
  • The two book supports - two pieces of 1 cm thick MDF or plywood measuring 22 cm x 40 cm
  • an off-cut strip of MDF 2 cm wide and 40 cm long. This is to hold the non-adjustable left side book support.

  • Four heavy duty right-angled corner brackets. Each side of the brackets must be the same length. Mine measured 9 cm each side, and 6 cm wide. These are used to provide a 45 degree angle to support the books.

  • 2 lengths of Choc block electrical terminal block each measuring about 5cm long. These are sometimes called "terminal blocks" or "connector strips" - available on eBay. This will provide the adjustment postions for the right side of the book support.

  • A pair of ball bearing drawer runners approximately 1.7 cm x 41 cm. These are to allow the base board to roll freely left and right to allow for the changing position of the book as it is scanned. Also from eBay
  • Some short screws to attach the parts to the book supports and base board
  • A can of matt or satin black spray paint
  • Some black non-slip drawer liner

Step 9: Assembling the Base Structure and Runners

Spray paint the top of the base board also one side of both of the book supports, and the narrow MDF strip all in black, and let them dry. This will be touch dry in about an hour or so. It is best to spray the paint in the open air to avoid fumes.

Mark one of the 45 cm edges of the base board with a temporary label "FRONT".

Turn the board over with the black side downwards, and the front towards you. Screw on the drawer runners. These should be parallel to the front edge and the back edge, about 3 cm away from those edges. They should also be centralised left to right.

Turn the board back over so it is now resting on the drawer runners. Try rolling the board left-right on a table. It should move smoothly. If it doesn't run smoothly, the ball bearings may need a bit of lubricant to help it run - I used vaseline. It is important for the board to move quite freely left and right.

Step 10: Making the Book Supports

Screw the scrap 40 cm piece of MDF front to back along the left edge of the board.

Take one of the book supports and turn it over, so the black side is facing downwards. Screw two of the steel corner brackets to the back of the book support, one near the front edge and one near the back edge of the book support board.

The LEFT book support should have the bracket flush with the edge of the book support board.

The RIGHT book support should be about 1 cm from the edge of the book support board.

Turn these book support boards over so they are resting on the steel brackets. Each support should be roughly at a 45 degree to the surface they are standing on.

Push the LEFT side support up against the strip of MDF on the left side of the base board. This support has a fixed position.

However the RIGHT side support needs to be able to be moved to accommodate thicker books. So its position needs to be adjusted.

To provide adjustable positions I used the plastic terminal blocks called choc blocks.

First remove all the terminal screws and brass fittings so you are just left with a length of plastic moulding. Cut two pieces of choc block each one about 10 cm long.

Use a sharp knife to cut off the top of each terminal at a 45 degree angle as you can see in the photos.

Screw each length of choc block to the base board at right angles to the right edge of the base board. Position them so the right side book support angle brackets will slot into the choc blocks.

The base board and book supports are now complete. The whole unit should move freely left and right under the plastic tubing framework you made earlier.

One last thing . . . put a layer of black non-slip drawer liner on the upper surface of the left and right book supports. This will stop the book from moving or sliding about when you are turning the pages in the scanning process.

Step 11: Making the Plastic Platen

To make this I used two pieces of 3mm thick acrylic measuring 22cm x 35cm. You can use regular acrylic, but it is rather shiny and reflective. So I used XT Anti glare Acrylic from this source

Anti glare Acrylic suppliers in UK

Other people have obtained similar anti glare acrylic from picture framing and craft outlets. The Acrylic has a coating which really does cut down reflections.


My first platen actually a piece of acrylic bent into a right angle. But I found the bend was quite rounded and not "sharp" enough so it didn't fit well into the groove (gutter) of the book.

Second try was acrylic glued together in a V shape. The glue is a special acrylic cement used by model makers. It comes branded as "Plastic Weld" and is a liquid. The chemical name is Dichloromethane or Methylene Chloride. You need very little of this cement, and you do need a very crisp, clean edge to the plastic, so that the edge of the plastic make an excellent contact with the sheet it is being glued on to. The cement actually dissolves the acrylic and the two pieces of plastic become welded into a single V shape. It works OK, but is awkward to transport, because it is rather fragile and is a large bulky V shape just held together with a thin cement bond.


So for my third attempt I used a screw together approach. I found these small white plastic reinforcing corners that are used for making kitchen drawers. But if you can't find them you could use right angled metal brackets like the photo.


You have to drill the acrylic carefully to avoid cracking it. I use a variable speed drill and slowly drill through using a small drill bit to start with, then use a slightly larger drill bit to fit the screw. Make sure that you position the sheets carefully, resting the edge of one sheet on top of the edge of the other other to form a good right angle, with no protruding overlap.

Step 12: Making the Platen Hangers

The platen is suspended on both sides by a T-shaped metal piece. These are cheap and are generally used for reinforcing joints in furniture etc. If you can't get a T shape, then an L shape will do instead.

They come flat, and you need to bend the metal end to about a 45 degree angle using a vice and gentle pressure. Since they are made of thin steel they are easy to bend.

You are going to fasten the hangers on to the top edge of the platen just FORWARD of the mid point, so that the platen will hang with the rear end of the V slightly lower than the front of the V as shown in the photo. [NOTE this picture shows my earlier platen - glued not screwed]. To get a good position for the T shapes, try suspending the platen between your fingers on either side, so the platen is angled slightly back, Then mark the position on both sides and drill and screw the T shapes to the acrylic, using the same careful slow drilling aproach as you used before.

Step 13: Making the Camera Support Bars

When you have constructed the upper and lower parts of the frame, you need to make the left and right camera support bars. To do this will need the two remaining plastic Tees that you drilled out at an earlier step. These will slip on to the left and right arms of the counterbalance frame as shown in the photo above.

However, the camera support arms need to be adjustable and to move up an down to get the ideal camera position.

Step 14: Making the Slots in the Tees - Drawing the Pattern

These two images show what you are aiming for in this process, which is to make slots though the end of the Tee.

Start with one of the drilled through Tees - one of the ones where you drilled right through the crossbar of the Tee.

Make sure you can slip a length of tube right through it. If it is a tight fit, that is OK. Remove the length of tubing.

You have to make this oval shaped slot on either side of the Tee as shown in the picture.

Next take a piece of white paper or card, and draw round one end of the Tee.

Mark the approximate centre point of the circle with a pen

Draw two lines at right angles to one another though the centre point.

Draw one more line dividing one of the right angles. This will give you three lines going though the centre point.

Take a felt-tip pen and mark two of the curves like I've done in red on the picture.

Cut out the circle and stick it on the end of the crossbar, using sticky tape. Line up the remaining line with the leg of the Tee as you see in the picture.

Step 15: Making the Slots in the Tees - Marking and Cutting the T

Next you need to mark the plastic tubing using the red lines as a guide. I used a typewriter correction fluid to draw the white lines near one end of the Tee. You could use a bit of white paint or even some yellow or white nail varnish. The main thing is you need to see the line against the black background of the plastic.

Next you need to drill through both ends of the white guideline. and then flip the Tee and drill through on the other side of the Tee - at the same end of the Tee.

Use a saw to cut through from one hole to another using the white lines as a guide where to cut. Finally file out the edges of the oval shaped holes. I've pushed a piece of white paper though so you can see that shape you are aiming for.

You need to make two of these Tees, one for each of the counterbalance arms.

Step 16: Fitting the Camera Support Bars on to the Frame

Slide the two Tees you have just made on to the counterbalance arms. Insert and glue a 20 cm length of tubing into the leg of each Tee. This becomes a handle you can use to raise and lower the camera support bar. DO NOT glue the crossbar of the Tees on to the counterbalance arms.

Don't try to fasten the Tee on to the counterbalance support arm at this stage, because it should be positioned to hold the camera centrally over the platen. And you will need to make those adjustments later on.

But after you are all set up and the cameras are correctly positioned, as a last stage of fitting the camera support bar, you will need to drill a horizontal hole through the oval shaped hole in the Tee and out the other side, and use rubber washers and a wing nut to hold it firmly in position, as shown in the second picture

NOTE on the photos

1. The white scale shown is made of a length of plastic tape measure used for sewing work, glued on to the camera support bar. Its only function is to ensure the cameras are equally distant from the platen, but this tape measure refinement is not essential.

2. The photos show an earlier model of the scanner, and the oval holes in the Tees are in a different position from the ones you have just made. Follow the later pattern of positioning the oval hole.

Step 17: Camera Mounts

These are usually used for mounting a camera on bike handlebars, and I got them on eBay. I've shown three different models, but the one I like best is the one on the left. It grips firmly on the camera support bar. To fasten the camera mount on to the bar, use the lever on the right hand side. Twist the lever to loosen or tighten the grip on the bar, then press the lever down and you get an extremely tight grip.

The actual camera mount can be rotated and tipped in any direction, and so you have full mobility in all three planes - rotate, left and right, and up and down.

You will need three camera mounts - two to hold cameras, and one to hold the light over the platen.

Step 18: Counterbalance Weights

These are 0.5kg wrist/ankle training weights from eBay. Fasten them on to the rear of the counterbalance arm using velcro straps.

You need to adjust the position of the weights so that they almost exactly balance the weights of the cameras and platen. I use a grip clip like that shown on the second picture to stop the weights sliding too far back. But if you have heavier cameras you may actually need additional weight to balance the scanner well.

Step 19: Lighting

I have used a 20 watt LED floodlight, which I got on eBay. You need to get one without the PIR motion sensor. This gives a very bright and even light across the surface of the book.

You will need to insert and glue in a 25 cm length of plastic tubing into the movable Tee that you put on the crossbar of the counterbalance support.

Use the final bicycle mount attach the lamp to this tubing vertically above the platen.

You can move the lamp up and down vertically above the platen to find the ideal position with no reflections. When you have found this ideal position, drill right through the crossbar of the Tee and the tube and pass a bolt through the drilled hole to hold the lamp at the right angle.

Step 20: Cover to Remove Extra Reflections

If you have a problem with reflections from external light sources such as room lighting, you may need to cover the scanner to prevent this. I used a very inexpensive fabric wardrobe closet bought on eBay. Sometimes these are listed as canvas wardrobe, but it is really a very light weight black cloth covering a frame.

The tubular steel frame will need cutting down to about half its height. Just cut through the vertical rods. Actually I used some of these cut-offs to provide the steel reinforcing tubes when making the plastic frame at an earlier step. You will also need to cut the cloth so it just touches the table

The wardrobe has a central zipper, so you can zip it upwards and fold back the left and right flaps to see what you are doing.

Step 21: Cameras

You can use any of a wide variety of cameras, but they should both be the same make and model.

I used the Pentax Optio VS20 because it has 16mp specification, and also can be fired with an infra-red remote controller. A single press of the remote will fire both cameras, and it avoids camera shake. One of the Optio camera settings is "TEXT" which gives an ideal pre-set for black and white images of text pages.

I got both the cameras and the controller for low prices on eBay.

If you can't get the VS20, then there are other cameras that allow remote control firing of the shutters. Nikon is one manufacturer which has models that do this. You may want to get a DSLR camera with more sophisticated controls and a better lens.

Step 22: Original Output From Camera and Final Post-processed Image

Here is a sample page as taken with the camera.

The original image was taken with a Pentax compact camera with 16mp resolution.

The second picture shows how the free ScanTailor software can improve and correct the original photographic images.

ScanTailor software removes any keystone effects, rotates, straightens and crops the image and delivers a clear black/white text output image in tiff format, as seen in the second picture.

The third picture shows an enlarged view of the text as outputted from ScanTailor to give you an idea of the quality of output.

Step 23: Another Way of Making Adjustments for the Book Thickness

Some people have had difficulty in finding the plastic components I used for adjusting the right side of the book cradle. So here is another way, using what I hope will be an easy to find material.

This adjuster is made using a wire kitchen cooling rack. They are used for cooling cakes straight from the oven. I bought this in the cookery section of a hardware store.

I cut the rack down to a better size using wire cutters, and you can see the result.

I have not glued down this prototype, but you should fix it firmly to the baseboard using glue or screws. The red arrow shows how the right side of the book cradle can move to accomodate the thickness of the book.