Compressed Air Rocket Launcher




Introduction: Compressed Air Rocket Launcher

About: Cleverly disguised as a responsible adult

Compressed Air Rockets... Launched Up a Few Notches.

In a 2008 Make magazine, Rick Schertle wrote a great article how to make compressed air rockets. Like many of us Instructable-lovers, I've seen a great many articles, tutorials, Instructables, and How-To guides for all kinds of cool projects... But Schertle's article was different - for the first time ever, I actually get off my lazy butt and immediately went to the hardware store. And boy am I happy I did (btw, so are the kids, adults, and Hackerspace Charlotte fans that got to partake in all the rocket goodness with me).

But we makers are never happy with leaving well-enough alone, right?

From the very beginning mods were clearly required. For example: I didn't have an old tire from which to salvage a tire stem, and my first store didn't stock a decent substitute. But this was a good thing. It got the wheels upstairs turning, thinking of all the possibilities, and their advantages and disadvantages of the various components. This 'ible shares the new design I've come up with and how you can build (or mod) it yourself.

Note for the slackers: If you don't want to be bothered or you don't like the design I have here, then you can always just buy a kit from the Maker Shed.

Shopping tip for the semi-slackers: Check your local Lowes or Home Depot - our nearby stores will let you order all the parts online and then pick them up in the store 20 minutes later (but give them an hour or two for all these parts)... much easier than digging through the mis-labeled bins yourself.

This instructable has been at the 90% finished mark for a couple years, so instead of waiting for me to all the way finish or put the latest revision in I'm publishing now "as is for" the benefit of all those that have asked through the years.

Step 1: Decide on a Design

What makes this Instructable any different from the others? Testing, redesign, more testing, and you guessed it more redesign. This led to stable and compact design with integrated base with easy aiming and interchangable parts. Hopefully you'll agree it's worth the writeup. There are several options to consider in the design of compressed air rocket launchers. You'll want to determine your size or volume approach, what connections you'll use, and then settle in on the right valve mechanism. For the most part we found that 1" PVC provides a good balance between volume of air, size of launcher and cost of parts.

Size Matters

High volume launchers don't require as high of a pressure to get good results. This is a great option for kids where 20-30 pounds is just about the limit of what you can do with a bike pump.

Low volume launchers are much more compact but require higher pressure to achieve the same altitude as the high volume launchers.

In the end all the designs require about the same number of pumps to achieve the same altitude. The amount of Work this system can do is after all the simple combination of Pressure times Volume ( W = pV ) with a little Volumetric Flow thrown in (which gives an advantage to the big high volume launchers).

Connections: Threaded vs Slip or a Mix?

Connecting the launcher pieces is another design consideration.

Threaded connections allow you to build an entirely glueless launcher. No messy primer or glue means you can assemble this launcher in the car on your way to the park (or even in the store to make sure you have all the parts ). Due to the availability of materials, threaded connections should be utilized with the low volume design, however threaded connections are more pricey. Sections of pipe with threads on both ends are called "nipples" (stop giggling), and I've only found then in Schedule 80 (grey) PVC in lengths up to 12 inches. Schedule 80 is stronger and has better high temperature properties (Schedule 80 is the only PVC version I recommend). If you're interested in the high volume design, then Slip, or Slip-Threaded connections are the way to go. Mixing in a couple of slip-threaded adapters to in few key locations will make modifying/reusing/repairing you launcher much easier. If you're going to do science experiments and test the pressure vs volume trade-off, I highly recommend using threaded connections where indicated. OK, I actually recommend using them no matter what, but the choice is yours.

Valve Options

Determining the best valve for your launcher is a not so obvious choice. Sprinkler valves make the whole project that much cooler - fast launches, electricity, a button to push... what could be better? Well if you're making your launcher with copper pipe for awesome yet expensive steampunk rocket launcher, a green plastic sprinkler valve is probably out of the question - brass quarter turn valves area must (or spray paint I guess). At close to $12 this valve is the single most expensive part of the launcher. And the sprinkler valve gives a much snappier (higher power) launch, but that may not be appropriate for all audiences. PVC quarter turn ball valves are much cheaper (less than a dollar online or $3 in a store), and they're sort of auto-regulating. Smaller kids can't open them as fast. And you're doing this as a class project, you can build one of these simple launchers with the PVC quarter turn valve for less than $10 for all your parts! But sprinkler valves make rockets go dramatically higher (~5-10x).

Step 2: Gather Your Materials

Save time and your sanity - leave the shopping to the professionals. Order your parts online at Ace/Lowes/Home Depot and then walk in to the customer service desk to pick up your parts a few minutes later. That way all you have to do is inventory, pay and go. The inventory is really important. It's just as easy for them to confuse a 3/4 x 1" adapter for a 1" x 3/4 adapter as it is for you to mistakenly order the wrong thing! To make it easy I've included the relevant portions from the receipt of my last Lowes order.

Please note that they do NOT have the 1/8" inlet/tank/schrader valve. You have to buy that elsewhere. Also no one store has the lowest price on everything. If you value cost over convenience, order for multiple sources. And if you have time as well, consider ordering everything but the big pipe online. And yes, I use more threaded connections than is absolutely necessary - feel free to glue parts together if you don't think you'll ever change them. Likewise if you don't like the way I change sizes, do what best suits your needs. A few of the size/thread decisions where dictated by what was locally available.

WARNING: I much prefer Schedule 80 PVC (not listed below), for personal use or Galvanized Steel Pipe for large scale/classroom use. Steel is obviously much stronger (and much, much heavier), but somewhat surprisingly - less expensive that Schedule 80 PVC!! Don't get the "Black Steel" pipe - it will rust, nearly overnight. Schedule 40 is not as strong as Schedule 80 and under no circumstances should you use Schedule 20 ( "thin wall" ) PVC. And DWV (Drain, Waste, Vent) or Foam Core PVC is NOT pressure rated at all. It's mostly available in the larger sized (3+ inches diameter), but avoid it like the plague all the same. And if you do opt for Schedule 40 PVC take care to wrap it in tape and pressure test. Also know that NASA pulled their Compressed Air Rocket Launcher instructions from their Rocketry Manual due to a failure that resulted in injury... (the reason wasn't specified, but they almost certainly weren't using the stronger Schedule 80 or Galvanized Steel Pipe).

These parts are for Schedule 40 PVC, because it's most plentiful, cheap, and what was recommended to me when I made my first dozen launchers (none of which have had any sort of catastrophic failure after many hundreds (maybe thousands) of launches each). Again - I recommend Schedule 80 or Galvanized Steel.

1 each - 1/2" x 10' Schedule 40 PVC Plain End Pipe
Item #: 23966 Model #: PVC 04005 0600 $1.78 Launch Rod - You only need about 12", so this is good for 9 more launchers!!

1 each - 3/4" x 1/2" PVC Pressure Sch 40 Adapter
Item #: 22698 Model #: 436101 $0.57 Launch rod threads you could go for 1/2" straight to 1" and skip the next part but it's harder to find

1 each - 1" x 3/4" PVC Pressure Sch 40 Bushing
Item #: 51348 Model #: 439131RMC $1.13 Launch Rod Adapter connects threaded launch rod to articulating arm

2 each - 1" PVC Pressure Sch 40 Elbow
Item #: 126824 Model #: 412010RMC $1.37 Articulating launch arm - Don't make these tight! They need to turn so you can aim

1 each - Orbit 1" Jar Top Valve
Item #: 249620 | Model #: 57661 10.22 Main Release Valve - This part can be replaced with a quarter turn ball valve... but why? Make sure the solenoid is off-center! (the off-center solenoid models seem to be the high pressure variety that we want).

1 each - 1" PVC Pressure Sch 40 Adapter
Item #: 23858 Model #: 436010RMC $0.48 Spinkler Valve Adapter - Your sprinkler valve _may_ come with two of these - check first

1 each - 1" x 10' Schedule 40 PVC Plain End Pipe
Item #: 23976 Model #: PVC 04010 0600 $3.50 Body Tube - You will need two 16" lengths,one 9" length, two 4" lengths, two 3" lengths of pipe

1 each - 1" X 1/2"PVC Pressure Sch 40 Tee
Item #: 23877 | Model #: 402130RMC $1.00 Inlet Tee - In with the good air

1 each - 1/2" x 1/8" Brass Bushings
Item #: 35094 Model #: A-826 $3.18 Inlet Adapter (Expensive!) - These can be found online in PVC for less, but shipping ends up spoiling it.

1 each - 1/8" Inlet/Tank/Schrader Valve ~$5.00 Bike Valve $1.49 from HD online only. $3 at Grainger. $5 at Ace Hardware in Stores Now!

2 each - 3/4" x 1" PVC Pressure Sch 40 Adapter
Item #: 22695 | Model #: 436102RMC $0.94 Air Tank Connector

1 each - 1" x 3/4" PVC Pressure Sch 40 Tee
Item #: 23875 | Model #: 402131RMC $1.44 Air Tank Connector For "Q" Model Only - This is the tank end that connects to the launcher.

4 each - 1" ELBOW
Item #: 23870 Model #: 406010RMC $0.48 Q - Tank Corners For "Q" Model Only

You may also need a saw or knife to cut the pipe to size with. Primer and glue is also required. Duct tape makes it safer, and electrical tape over that makes it look cooler. Also a button (which is truly optional but so much more fun), wire, battery, and connectors are all available from Radio Shack, but they are covered later.

Step 3: Measure, Cut, and Dry Fit

Part of what makes this design so much better is the optimization / efficiency of the position and size of the components. The ability to twist/turn threaded connections either for assembly or aiming was maintained while still ensuring the smallest possible, yet highly effective launcher. Feel free to make adjustments as you see fit, but know that we didn't leave a lot of excess wiggle room on the table. When using schedule 80 or Galvanized Steel Pipe choose nipples of approximately the same dimensions or the nearest size you can find that fit. You will need to eliminate the back 9" piece and replace it with two caps on the 12" (cause they don't make 16" ) side pieces. Be sure to test fit in the store (for Schedule 40 or Schedule 80 slip fit buy the 10'x 1" PVC first, cut it to length and take it back to make sure you buy all the right pieces).

1" PVC pipe:
Sides - two pieces cut 16"
Back - one piece cut 9"
Front - two pieces cut 3.5"
Center - two pieces cut 3"

1/2" PVC pipe:
Launch tube - one piece cut 11" (as big as will fit when folded flat is the goal )

Dry fit everything to make sure it all fits properly with your connectors. But don't push too hard are the pieces will get stuck together. Glue will make the pieces easily fit all the way together. Just mark the loosely pieces with a pencil at whatever depth they go in nicely. You can gauge how much more they will fit together using the pencil mark. Do not dry fit the pieces with primer on them - they may never come apart!

Step 4: Prime and Cement

PVC Primer is usually purple and both stains and dissolves like crazy.  It also smell bad.  Be careful with it.  Put down a drop cloth and wear old clothes and do this work in a well ventilated area (like outside).  There always seems to be a little bit of primer left on the lip of the can, blot it up with paper towel so you don't spill it!  Prime both parts that you're joining, and then apply glue to both parts to be joined. You want enough glue that you see it pushing out of the connection, but not so much that it drips or runs.  Do not prime all of the pieces first - they're only likely to get grimy while you're glueing.  Only prime as you go.  Tip: It is often very useful to insert a non-glued piece into an elbow to help get the angle right for the other side of the elbow that you are gluing. 

Insert your threaded connections all the way and glue them in place to ensure that the desired alignment/angles/seal is achievable once glued.  Twist the parts as you insert them.  This really does help to ensure that everything is evenly glued.  Just make sure they're pointed in the right direction when you're done.  The glue does not take long to dry.  Hold the parts together for about 10-20 second - they will try to push apart!  After that the parts should be pretty solid, but hold off on high pressure for a day.

This design does leave you with a situation where you will need to glue two connections at once and depending on where you do that, you either will need to bend your pipe a little to insert the parts or you will not be able to twist as you fit them together.  I prefer the a little bending.

Step 5: Tape Threads

All threaded connections should be taped to prevent leaks. The teflon tape we use is either white or yellow. The yellow tape is most often used for gas and iron pipe while the white tape is often used for water and copper pipe fittings. Air being a gas you might be inclined towards the yellow tape. But I've used both and they both work just fine even at really high pressures, so you might want to let price dictate: white tape is about one third the price of yellow.

Tape in the direction of the threads so that the motion of threading the pieces together does not work to push the tape off, rather it tightens the tape on. This isn't terribly critical, but it does sometimes make life a bit easier. Go ahead and use a good thick layer of tape - enough that you can still see the threads underneath, but they're smoothed out by the tape.

Step 6: Make Launch Button

This step is optional, but totally worth it. If you've opted for the quarter turn ball valve, just skip ahead. I say this step is optional, because you can do a couple of things instead of a making a real button launcher.

Just turn it! The solenoid comes out by turn counter clockwise. Just give it a twist and the pressure will be released in an instant and your rocket will launch. This action happens much much faster that with a quarter turn ball value. If you're into fast pressure release you can actually make it even faster with an air hose blower adapter and have a totally manual (no electricity) trigger. If ever your batteries don't have enough juice to open the solenoid (it takes more power at higher pressures) this is the fall back method that always works.

9 Volt Battery - The leads on the solenoid should already be stripped. If you stick one terminal of a 9V battery to each lead the solenoid should actuate, releasing the pressure and firing your rocket. Really simple, and all you need is the 9V battery. But it leaves you a little too close to the action. I like to tape one wire to one side of the battery with electrical tape and then tape the other wire near the other terminal. Then I can still "push" the wire kinda like a button.

Lengthen the wires - add some speaker wire (or any other suitable wire) to the leads (just twist the one speaker wire to one solenoid wire and repeat) from the solenoid and apply the battery as above. This puts you at a safe distance where you can better observe the launch.

But there's nothing that says press me like a red button! For my dedicated launch buttons I use two 9V batteries or six 3V watch batteries (CR2032). The watch batteries can be much cheaper if you order them online. It's important to note that the solenoid expects to be wire to a 24V AC circuit. We're using DC and a solenoid is basically a short circuit when it comes to DC. So do NOT hold the switch closed or you could burn out your solenoid (and heat up you batteries quite a bit). Also if you get the "wrong" sprinkler valve it will require more than 9 volts to operate the solenoid if you're over 40 psi or so. Two batteries usually does the trick and three might put your solenoid at risk.

On to the wiring. You will have three pairs of wires. One pair from the battery. One pair from the solenoid. And one pair from the button. Connect one wire from each pair to one wire from each of the other two pairs. The length of the wire doesn't matter as long as each part (button, battery, solenoid) is connected to the other parts with one of its wires. Sometimes I put the button on battery holder so the wire from the battery to the button is really short but the wire from the battery to the solenoid is long and the wire from the battery to the solenoid is also long. Other times I strap the battery to the sprinkler valve so the wire from the battery to the solenoid is short, but the wire to the button from the battery is long and the wire from the solenoid to button is long, as well.

Step 7: Wrap It Up

Pressure rated Schedule 40 PVC is reasonably strong stuff. The 1" variety can hold around 400 psi before it bursts... under ideal conditions. As the temperature rises, that burst pressure falls off fast. On a hot summer day you have a little more that half that pressure rating. But your high pressure sprinkler valve is only rate for 150 psi and the low pressure valves are rated for a mere 75 psi. If you get above that the valve won't open when you apply voltage (but you can always turn the value to manually fire the rockets). And most bicycle pumps or compressors top out below 200 psi.

But that's for new well care for pipe, not something that is getting bumped around constantly, pressurized and depressurized, and worst of all - left out in the sun to deteriorate the PVC. Sadly, as with all things, the integrity of your launcher will eventually deteriorate until it fails. So we take steps to lengthen the time to failure and reduce the hazard when that failure occurs.

Tape will stop a bit of the damage caused by the invisible light of the day star. And it will [hopefully] prevent nasty shards of PVC from flying about in the event of catastrophic failure. The as yet untested idea being that good reinforced duct tape can provide enough give to let the PVC break and release pressure, and enough strength and grip to keep tiny shards from completely separating.

Use a couple of layers of tape here. Cover everything plastic, especially the straight pipe (the elbows and such are a bit stronger, but no guarantees here). Don't skimp - think of the kids!

Duct tape may be strong but it looks terrible. Electrical tape can provide a nice finished look for your launcher. And who doesn't love stripes? Nothing says danger like black and yellow stripes!

Step 8: Test It... Safely

Before you launch at the park, give your launcher a pressure test... safely. Stick the whole launcher in a trash can or something else filled with enough water that you feel will adequately contain the chaos if it does decide to burst. Use a pump with a long hose so you're not in the blast/soak zone. Start with low pressure! Make sure basic operation works. Increase the pressure gradually test firing "blanks" along the way. When you get to your max intended operating pressure, repeat the pressurization/de-pressurization test several times. Then over pressurize your launcher by some unreasonable, amount. You don't want to discover at the park, with kids gathered near, that a few extra pumps when you're not looking is all it takes to turn your launcher into countless high speed projectiles.

Step 9: Blast Off

Sadly i couldn't number the steps in reverse with a nice count down from 10 finishing here with Blast Off. 

2 People Made This Project!


  • Game Design: Student Design Challenge

    Game Design: Student Design Challenge
  • For the Home Contest

    For the Home Contest
  • Make It Bridge

    Make It Bridge



Question 1 year ago

My son just made this for his science project and it NOT working 😔 he is so disappointed! Seems like there isn’t enough air pressure and barely any air comes out ( not even close to launching the rocket ) no idea what can be causing it . All sealed , even have it connected to a 24V adopter instead of battery … thought that would solve the problem . But no luck . Any advice ? Thanks


Answer 1 year ago

Help me help you Kate. :D


Answer 1 year ago

First and most important - why trying to figure this out: Don't put your face in front of the launch tube. There is no valuable debugging information to be gained by doing that, and you can lose and eye!

Second tell me more. What version did you build? Can you send a picture (or three)? How are you releasing the pressure? What brand/type of sprinkler valve do you have? Do you feel air leaving the launch tube as you pump it up with a bike pump? Are you sure pressure is getting into the launcher? Do you hear the sprinkler valve solenoid click when you launch?

Give some more information to go on, we'll figure it out!


Reply 1 year ago

Try manually opening and closing the valve. My best guess (with limited info) is that the valve is not closed, so it's not holding pressure. Turn the solenoid counter clockwise until it's obviously loose. The turn it clockwise until it's tight. Normally it takes less than a quarter turn to manually open or close the valve, yours might just be open to start with. If that's not it, please give me some more information to work with.


1 year ago

Fantastic instructable! Thanks for taking the time to put all this together. I really appreciate all the shared learnings from your experiments. I can't wait to put this together for all our nieces and nephews at the family reunion.

Having said that, I do think that it could use some updates and edits. Here are some thoughts:
1. Remove references to different models as they only confuse the reader which model is actually being built. I would just leave those images up top when you discuss the evolution of your thinking. You're just offering instructions & parts list on one design, I'd stay crisp on what it is that you're telling people to build.
2. Yes, steel is better than schedule 80, and 80 is better than 40. But 40 is the only thing I've seen used, and it's used pretty widely. Also, in your examples, you have schedule 80 pipes, and schedule 40 fittings. In my experience, the weakest part by far are the elbows (the failures I've seen in plumbing are almost always at the joints) so the schedule 80 is not helping you at all in that first photo. Edit: In addition the elbow, adding connectors adds more weak spots -- here are some data points - threaded/screwed fittings are weaker than socket/glued. So for Sched 40 1", it's 225psi for threaded fittings, vs 270psi for glued for that same 1" 450psi pipe.
3. I'd love to see more on how you built your buttons. I'm looking at finding a cheap NO momentary button wired to a few 9v bats in a 3d printed case.
4. I'd also like to see how to integrate an air compressor to this build if you have any thoughts on that. At my kid's elementary school, they built a 3 rocket launcher that was driven from a single air chamber that was kept pressurized by an air compressor.

Thanks again for posting!


3 years ago

Great work on this design! You and I came to a similar design and I just discovered yours. I made an instructable not too long ago after some of our old launchers got destroyed by some careless employees and I needed to make something a bit more sturdy. I used two inch tubing for everything, but now I want to go and buy some more PVC and try a smaller/cheaper design. Thanks again for all the work.


Reply 3 years ago

Check my rocket making video at the end. Those rockets can be made out of tissue paper, but with packing tape they will hold well over 100 pounds of pressure and go clear out of site!


Reply 3 years ago

Very similar indeed! If you'll notice in my pictures I had a _small_ accident with the primer (and lost many of the numbers on my square). My would kill me if I brought that stuff anywhere near the dining room table, protective covering or not! ;D

I use galvanized steel now - its stronger than schedule 40, and the only place I can find schedule 40 bigger than 1" is at Ace Hardware for a seriously premium price. I also tried schedule 80 (stronger still, and heat tolerant - pvc looses strength in the sun too). In the end galvanized steel is nearly the same cost, doesn't rust like black steel, dramatically stronger than any plastic pipe, and reassuring to people (like parents, and NASA) that worry about catastrophic failure of PVC.

Thank you for doing what you do. I can see from your instructable people are already building it and inspiring even more people. Awesome.


3 years ago

I teach a section of Scientific Research & Design and 4 sections of AP Physics 1. I had a group of students in my R&D class who built this to test different air rockets to determine ideal construction of it. They built a basic version with a pressure chamber but made the output end a 1/2" bushing so that they could swap out different size and shape outputs. Their original design was just a 1/2" pipe that air rockets could be fitted over to shoot down the hallway. Then they made one with an elbow that could shoot rockets up in the air. Due to an abundance of safety, we never fill the chamber to more than 30 PSI. I've found that is more than enough to do anything I need with it.

They made this to test out different types of rockets, but I've found it useful for 4 different activities across the classes I teach.

1) My R&D class did this, but I also did it with my AP Physics class, and I'm sure it would be great in a regular physics class: students design and build smaller rockets that will be shot at a low angle (about 20 degrees) and compete to see whose rocket can travel the furthest down a hallway. I let them have half a class (40 minutes on block schedule) to just make a few and test them, and then the rest of class to design one good one for competition. The competition was at the start of next class, some groups wanted to take them home to sturdy them up or put extra tape or even decorate them.

2) Every year my physics classes build rockets using Estes motors and paper towel tubes. One of the things we don't really get to get into is how fins work and how to build a stable rocket. Ours is mostly about forces and impulse, and they measure the height and make some calculations. I used this launcher last year with the 90 degree elbow attached to have them play with fin design and create rockets that fly straight up. If you teach physics and want to shoot rockets but can't afford buying engines, this would be a perfect way to incorporate a project that has to do with Newton's laws, impulse and momentum.

3) When we get into projectile motion, I use this for a lab practical at the end of the unit where we basically play Battleship in the gym. I fill the chamber to 25 PSI and then shoot paper rockets a few times and use a video analysis tool to measure the speed the rocket launches with. After we have gone over projectile problems and how to solve them, we go to the gym and kids set up wherever they want with a large (5'x5') piece of cardboard as their "battleship." Each group will choose another team they want to try to sink, and they measure how far away they are and then calculate what angle they need to launch at to hit them. The launcher has the 90 degree fitting on it, and they have a large protractor to measure the angle they want to set it at. I usually make it "one hit one kill," but you can adjust however you want for the time you have. Since I only have one of these, I take it to every group, then once everyone has had a chance to shoot all the teams that were hit are out and we start a new round. It's a lot of fun.

4) One of the things we always do when studying impulse and momentum is car crash bumpers where they design a bumper that causes smallest acceleration on a car crashing down a ramp. I used to do the egg drop but most kids have done that already in middle school. Now we do an activity that is a mashup of both of those. I take the launcher with the straight tube mounted on it, and the kids get a 16 ounce soda or water bottle to modify so that when the bottle is mounted on the end of the tube and shot into the wall, an egg loaded inside is kept safe. It’s almost the exact same thing as the egg drop but it relates to a car crash, which kids love to talk about.


Question 4 years ago

Our application just requires a slightly heavier rocket to travel about 15-20 feet horizontally but with a good degree of accuracy. would the low pressure system with PVC valve (not sprinkler valve) work well for this?


4 years ago

I'm sorry, but this instructable is missing a lot of information. "Lowes doesn't carry this, you'll have to find it somewhere else". "Be careful that your launcher doesn't explode when there are kids near". The list of materials is nice, but there are no instructions on how to actually put the damn thing together. When you have a bunch of white plumbing parts in front of you they all look similar. There are no guidelines on how to glue them together, or in which sequence. I actually did use Lowes pickup service, which was nice, but the minimum wage employees are not paid enough to check that the item they pulled from a box actually matches the box... not to mention the parts in this list that aren't actually used in the build. What's with the photos of other designs? You know what, I'm gonna build this my way and make my own instructable instead.


Reply 4 years ago


I'm really sorry this didn't work out well for you. Compressed Air Rockets are great fun whether you use this design or another one. I was trying to make it easier for you and others to give it a go by posting the most detailed description and steps possible. I clearly failed. I'm sorry.

I have clearly neglected this post in the 4+ years since I originally wrote it. Parts, prices, and availability have changed since then. I always knew this was likely to happen, but I figured it would be more useful for a time than not.

Specifically to address your comments:

For anyone else that may be here reading this in the future... I do point out that some parts are NOT available at lowes ("Lowes doesn't carry this, you'll have to find it somewhere else" - MH850). I was trying to be helpful since nearly everything else can be purchased at Lowes and I didn't want to leave folks hunting for a part that Lowes did not carry. But in the bill of materials I do point out specifically the other sources, prices, and part numbers from "somewhere else":

1 each - 1/8" Inlet/Tank/Schrader Valve ~$5.00 Bike Valve $1.49 from HD online only. $3 at Grainger. $5 at Ace Hardware in Stores Now!

I don't think safety should come first - we would never get out of bed if safety were first. But it should be up there! I call out safety concerns at several points in this project. While I can't find the words you (MH850) quote "Be careful that your launcher doesn't explode when there are kids near", that is absolutely something I might say. And I say things close enough when I include a step to pressure test this launcher safely at home away from kids before attempting to use it near kids. I also include a step to wrap the launcher in tape so that if it wants to explode the parts won't go flying. I also make specific recommendations as to which pipe selection to use schedule (still wrapped in tape) or galvanized steel - specifically because I learned (or surmized) why NASA pulled the "High Pressure Rockets" from their rocketry guide. I care about safety - and you should too. So if I didn't say it before, let me say it now, be careful that your launcher doesn't explode when there are kids near. Safety is very, very important.

Along with the list of materials in step 2, are steps 3, 4, and 5 that include not exploded diagrams, but exploded pictures of how and where everything fits together. And it it is true that I don't say how to fit every part into every other part, I do specifically use words in section 4 to telly you how to prime and glue parts (but you shouldn't do that anymore because Schedule 80 and Galvanized steel use nipples). I don't call out each part, just that general technique that is applied to all of the parts as laid out in the pictures. Likewise step 5 covers how to tape the threads for all the threaded parts (which is all that should be used anymore). But again I do not specially say how to screw in a threaded connection (lefty loosey, righty tighty), just how to prep it and then I leave it to the pictures to do the rest. If you could perhaps tell me what was the most confusing or where specific instruction may have been useful I could consider adding that. But if that happens to turn out to be something like "prime and glue the 1 inch by 3 inch PVC pipe into the 1 inch PVC elbow" followed by "Then glue the 1 inch by 12 inch PVC pipe into the previous 1 inch PVC elbow with the 1 inch by 3 inch PVC pipe attached"... I'll pass. I think it's best that you create a new and improved instructable. But thinking of safety I would recommend against gluing anything - use threaded pipe.

You are very correct that you can't count on the employees to get the order 100% correct. They have been off by quite a bit in my experience. I should have (and honestly thought I did) call that out right in the instructable with the ordering instructions. You should absolutely dry fit everything (or at least the elbows and special bits) in the store before you leave. It is far better to let them spend their time gathering the all the parts. Then you only need to go look for one or two parts that they get wrong. That could save you hours of hunting. But assuming (as allow the reader to do) that the order is going to be 100% correct could cost more time in going back to the store, returning parts, and hunting for the right thing. Again my apologies.

I'll probably just right a new instructable with updates and put a note at the top of this one pointing there instead of correcting here. The only launchers I make these days are galvanized steel with threaded ends. Good sprinkler valves are hard to come as well (3 x 9V batteries can overcome that in many cases - worst case scenario you can always twist the solenoid to launch).

I'm sorry this didn't work out for you. This may be the worst instructable you've ever seen but (certainly at the time) it was the best Instructable I ever created. Please don't give up - there are many other fine Instructables on Compressed Air Rocket Launchers here (links below) and it really is worth figuring out. But please don't forget the safety concerns (upgrade all of these designs to galvanized steel pipe).

And you can buy a launcher from Air Rockets works - they partnered with Rick Schertle (the guy that inspired me with his Make Magazine article)

And to make paper rockets that fly great (300+ feet) and don't explode... I have a video (that may be the worst video on youtube ;)


Reply 4 years ago

I appreciate the reply. My post was written at the end of a long day where I discovered that my Lowes pickup order was a mish-mash of non-fitting parts, and there were no instructions on how to figure it out. I tried to edit the wording to tone down the frustration.

A second trip to the store to do it myself made it much clearer, and I doubt I'll use store-pickup for things like this again. Dry-fitting everything is a must, assembly was a bit of a puzzle because every piece looked the same, but it was fun to play with the nasty PVC glue.

I will continue with this build for now, anticipating that it will be for lower-pressure launches for fun and teaching, and not high-pressure launches to impress the neighbours.

I would also appreciate a new instructable on building with galvanized piping as I've never worked with it before.


7 years ago

Built two for grandchildren in Atlanta and Cleveland. Fantastic.! They live it

16, 11:42 AM.jpg16, 11:42 AM.jpg16, 11:42 AM.jpg

7 years ago

That schraeder valve can be cut out of any bike inner tube, new or used. You can get them at places like target and walmart and simply cut them out. Then you have some awesome rubber material for other projects too.