Introduction: Electronics Building Tips ( in 21 Plus Steps )
I have been building circuits for a long time and may have picked up some ideas that may be new to more recent builders. There is nothing very hard or astonishing about the tips but they have helped me and may help you too. In my mind a tip is not an electronics project ( but occasionally may involve putting together a mini-project ) or full directions on say "how to solder". A tip is more a little trick in technique or approach. All of the following should fit this definition.
Step 1: Cardboard Parts Holder
When you are building, and particularly prototyping you tend to have a lot of parts, often ones that look alike, hanging around. Put them down and who knows what value they are. Good old Heathkit ( RIP http://en.wikipedia.org/wiki/Heathkit ) had a nice solution, insert the leads in corrugated cardboard and identify the part by writing on the cardboard. Pictures will stand in for the next 1000 words I might otherwise write.
Step 2: Ignore the Resistor Code
The same thing pretty much true of small caps: use a capacitance meter.
Step 3: Banana Plugs and Jacks
Banana plugs look a bit like a very small metal banana. They are very useful as they plug into a lot of things. Especially banana jacks ( see picture ). But you should also know they fit lots of other things. Most binding posts have a jack built in. ( see picture ). My favorite banana plugs are called stackable banana plugs, they have a jack at the back, and you can plug one into another and stack them up see the pictures. Pamona makes them, not sure what the best source is but here are a couple of links:
Banana plugs also fit some other things, one very handy thing is the standard alligator clip ( see picture ) Using the alligator clip is usually better if it wears its boot.
If the banana plug does not fit, perhaps you should adapt it, the pictures show how some tubing and banana jacks can be added to a test probe to make the probe jack-able.
Step 4: Make Adapters
The banana plug adapters are not the only ones you can make. Just one example: Make a jack for a meter probe. Mine is made from a bit of bare wire, wrapped to fit the probe and then soldered to the clip. I needed a little tape on the boot at the end. ( see pictures )
A very fancy adapter I made for RS232 cables is: Tea Connector for Serial RS232 Cables by russ_hensel https://www.instructables.com/id/Tea-Connector-for-Serial-RS232-Cables/
In fact adapters were an early theme of mine on instructables:
- Audio/Video Cable ( RCA Connector ) Splicer/Splitter from Salvage by russ_hensel https://www.instructables.com/id/AudioVideo-Cable-RCA-Connector-SplicerSplitter-fro/
- A Really Simple RS232 9 pin Sex Change. by russ_hensel https://www.instructables.com/id/A-Really-Simple-RS232-9-pin-Sex-Change./
Sometimes it may even be useful to buy adapters ( see pictures ).
Step 5: Look Up the Datasheets
Step 6: Print Pinouts
When prototyping it is nice to know what pin on an IC is what. You can grab the pinout pictures from the data sheets ( for example the 555 from http://www.ti.com/lit/ds/symlink/lm555.pdf ) The pinout is usually the top view. If you are working on perf board you really need a bottom view. To get this just use your image editor ( I use paint shop pro ) to miror the picture. These pictures can then be added to a document ( I use open office ) with both a top and bottom view or multiple parts. You can annotate the document as you want. Print it out and hang it up over your prototyping area while you work.
Step 7: Make Sure You Can See
Use lots of light, a swing arm desk lamp like this I have several in the lab. Since my work bench is just a sheet of plywood with some reinforcing around the edge, I make lots of extra mounts for the lamps by drill the appropriate size hole in edge. Now I can move the lamp to the best position easily. ( interesting how many swing arm lamps there are see: http://en.wikipedia.org/wiki/Balanced-arm_lamp )
A head mounted magnifier keeps getting more useful as parts get smaller and your eyes get older. This cheap Harbor Freight one works for me. I like this better than a magnifier in my hand or even on an adjustable arm. ( http://www.harborfreight.com/magnifier-head-strap-with-lights-38896.html and one I like a bit better <now gone it is the one in the picture> Not sure this is useful but "great look" http://www.amazon.com/Watch-Repair-Magnifier-Loupe-Glasses/dp/B007YBEHIO/ref=sr_1_4?ie=UTF8&qid=1389025042&sr=8-4&keywords=magnifier+glasses and finally the ones I think HF used to carry: http://www.amazon.com/Headband-Glasses-Magnifier-Reading-Antiques/dp/B004WRN5HM/ref=sr_1_2?ie=UTF8&qid=1389025042&sr=8-2&keywords=magnifier+glasses )
Step 8: Nut Starter
This is not really electronic, but often you need to assemble your project. Sometimes this involves starting a nut in a place that is really hard to reach. Heathkit had a solution, a nut starter. Basically this is a rod with a recess that just fits the nut. The recess should be somewhat elastic, plastic, rubber.... You place the nut into the recess, then you can reach way in and get the nut started. Not too hard to make, a different one for each size nut. You can even buy them. http://mendatools.descoindustries.com/MendaToolsCatalog/SpecialtyTools/35120/#.UrG--kD4tbI
Step 9: Coin Envelopes
Coin envelopes are small paper envelopes. Use them for small parts. Why? Because they are cheap , a couple of cents a piece, you can write on them, and they are stiff enough to line up in drawers of boxes. Check them out in the pictures. They come in various sizes. Get them at stores like Office Max or at Amazon perhaps http://www.amazon.com/Columbian-CO540-4x3-1-2-Inch-Envelopes/dp/B001IZF7GI/ref=sr_1_1?ie=UTF8&qid=1387420248&sr=8-1&keywords=Coin+Envelopes
Step 10: Strain Relief
Wires that will move or be pulled on after construction should have strain relief. This means that the wire will not pull on its electrical collection. There are many ways to do this, grommets, clamps, hot glue. On a perfboard you can weave the wire through and extra hole.
Step 11: Color Coded
When you buy connectors, jacks, jumpers..... think about the colors and buy them in as many different colors as you can get. The Pamona stackable banana plugs I recommended above used to come in about a dozen different colors, seem hard to find now.
Ribbon cable comes in a multitude of colors, peel off what you need, sometimes it is handy that you can get more than one conductor in a unit.
If you need more colors for things like binding posts the paint for plastic models ( cost 15 cents when I first bought them ) can be useful. For fatter cables you can use colored electrical tape ( like: http://www.amazon.com/3M-Electrical-Tape-9-Pack-Color/dp/B000PHGM14/ or http://www.amazon.com/Duck-299020-Colored-Electrical-Multi-Color/dp/B001B175J6 ) add a colored band to each end of the cable to create variants: gray with a red band for example.
Step 12: Test Points
Step 13: Keep It Neat
It is unfortunately too easy to find terrible examples of breadboard wiring on instructables -- you guys clean up your act.
Step 14: Take Pictures
Take pictures of circuits either to debug or repair. Especially useful if you are trying to draw a schematic of an undocumented circuit. Take from both sides. By mirroring you can be looking at the bottom while looking at a picture that shows the location of the parts on top. Those of you who are clever ( not me ) may be able to figure out how to make the two sides different colors and then superimpose to get an X-ray like view. If you figure this out let me know.
Step 15: Preset Strippers
Step 16: Use Needle Nose Pliers
Step 17: Soldering Tips
- Unfortunately solder with lead in it works better than the newer lead free solders. I normally use it but try to stay out of the fumes.
- Solder does not make a very strong joint, best if you have a mechanical joint first, but often this is hard. Also try to maximize contact area of the joint to make it stronger.
- Clean parts, particularly if old or oxidized before putting in place, I like 600 grit wet or dry paper, never use steel wool near you electronics work place.
- If the solder is not "sticking" a little scraping with a sharp blade may help. A bit of extra flux ( non corrosive please ) may also help.
- Inspect all joints just after soldering. With point to point wiring where the solder provides the only thing holding the joint together try ( not too hard ) to pry it apart.
- Keep the tip of the iron clean, damp sponge is fairly standard, wipe most every time. Good tips are often plated, do not get too aggressive and remove the plating.
- Remember solder when liquid tends to move towards the greatest heat.
- Pre-tinning is often helpful, always consider doing it.
- A temperature controlled iron is so much better than one that is not. Need not be really fancy. One in the picture is 40 years old, replaceable tips, still available.
Step 18: Miscellaneous Tips
- For integrated circuits and microcontrollers, use a socket rather than direct mounting of the component.
- For experimental circuits assemble and test one stage at a time.
- Power up without the chips and check voltages like power and ground. Also check continuity.... to make sure what you built is what you planned.
- Feel the chips to see if they are running hotter than they should.
- Powering up from a current limited power supply often keeps in some of the magic smoke.
Step 19: Power
Three terminal regulators are incredibility easy to use. LM7805 and similar parts are typical. They are often “short circuit proof”, use low parts count, come in many voltages ( or are easily adjusted ) and cheap. Many an instructable has been published basically using the circuits that come right is the datasheet. Adding to the back end of a wall wart makes a badly regulated wall wart behave, at a slightly lower voltage than the wall wart name plate.
Use batteries. If you need to be unplugged. If you are connecting your project electrically to a person or animal, then it should be battery powered. This can save a life. This applies to a computer as well, do not plug in and connect to a living thing.
Step 20: Cases for Your Project
On useful feature of a case is that the material is easy to work ( wood, aluminum come to mind ) and thin enough so pots switche, binding posts etc mount nicely. A case that is mostly unfriendly, say steel, may be OK if you use an aluminum or plastic face plate.
You should scavenge for cases, I use old tea tins ( see Tea Connector for Serial RS232 Cables by russ_hensel https://www.instructables.com/id/Tea-Connector-for-Serial-RS232-Cables/ ) metal cookie boxes, plastic file cared cases and even plastic jars. Altoid tins are popular for smaller cases ( like the classic minty boost. ). If you salvage some piece of equipment always consider saving the case.
There are some tools that are useful for case work. You should know what, drills, files, nibbling tools, reams, step drills and chassis punches are. Then you can decide which to use.
Step 21: Breadboards
Great for prototyping, not so great for permanent projects as the parts and wires have a tendency to fall out. You can recreate it with a custom printed circuit board, or use point to point wiring on .1 inch perf board ( link ). There are even pre printed circuit boards ( like:
- http://www.jameco.com/1/1/421-br1-solderable-pc-breadboard-1-sided-pcb-matches-830-tie-point-breadboard-power-rails.html
) that pretty much mimic a proto board but where you solder the component in.
For tips on using bread boards see my instructable: Comprehensive Guide to Electronic Breadboards: A Meta Instructable by russ_hensel https://www.instructables.com/id/Comprehensive-Guide-to-Electronic-Breadboards-A-Me/
Step 22: Diode in Power Connection
If you are powering your circuit from a power supply or similar it may be easy to connect the supply backwards. This may let the magic smoke out of your parts. If so put a diode in the supply line to block reverse voltages.
Step 23: Electricity Can Kill
But it should not kill you. Under 30 volts things are pretty safe. Dry hands and care help. Grounding yourself is not a good idea, if you do it for ESD issues do it through a high value resistor. Shocks across the chest are very dangerous because that is where most of us keep our heart. Keep one hand in your pocket and you will not get a shock across your chest.
Step 24: Make a Circuit or Buy an IC?
Step 25: Plugging in Old Equipment
Old equipment that has been out of use for a long time may fail, and dramatically if the old electrolytic caps are shot. Some people just recommend that you open up the equipment, rip out the caps and replace. Sometimes they can be saved with the right start up procedures.
The basic idea is that in an electrolytic cap the dialectic is formed by the interaction of the chemicals in the cap with the applied field. The dialectic fades away with time but can be rebuilt by gradually applying a voltage. Google reforming electrolytic dielectrics.
Methods to do this vary, the simplest is to plug the device into a variac and slowly bring up the voltage. A meter across the cap is very useful.
The ideal method from the point of view of control is to break the v+ connection on the cap. Then connect an external power supply ( perhaps through a high value resistor ) and measure both the current and voltage for the cap. Slowly bring up the voltage. Watch the current, it should go to a very low value. Keep increasing the voltage until you reach the working voltage of the part and you are done. It the current stays high, both you and the cap are done. This process can take from perhaps 5 minutes to an hour.
I used this technique in: A Tale of 3 Oscillators – Fixing Old Electronics by russ_hensel https://www.instructables.com/id/A-Tale-of-3-Oscillators-Fixing-Old-Electronics/
Step 26: Tips on Instructables
- The Greatest Electronics Tip I Know -- The Spudger by pfred2 https://www.instructables.com/id/The-Greatest-Electronics-Tip-I-Know-The-Spudger/
- PCB Soldering Tip #1: Tape by Radioactive_Legos https://www.instructables.com/id/PCB-Soldering-Tip-1-Tape/
- Electronics Tip - Meter Probe Protectors by uhclem https://www.instructables.com/id/Electronics-Tip-Meter-Probe-Protectors/
- Stripboard track cutter by scraptopower https://www.instructables.com/id/Stripboard-track-cutter/
- 7 reasons Your Circuit Isn't Working by mikey77 https://www.instructables.com/id/7-reasons-Your-Circuit-Isnt-Working/
- How to Easily Solder Wires to SMT LEDs by ProvideYourOwn https://www.instructables.com/id/How-to-Easily-Solder-Wires-to-SMT-LEDs/
- NiftyBender Deluxe - A tool for the stripboard user. by AndyGadget https://www.instructables.com/id/NiftyBender-Deluxe-A-tool-for-the-stripboard-use/
- Soldering Sockets and Header Pins on Straight by amandaghassaei https://www.instructables.com/id/Soldering-Sockets-and-Header-Pins-on-Straight/
- Repair your electronics by replacing blown capacitors by fhidiort https://www.instructables.com/id/Repair-your-electronics-by-replacing-blown-capacit/
- Watch for more instructables by me! Already working on 2 more on electronics tips. Why not subscribe?
- Already mentioned, but will say again see: Comprehensive Guide to Electronic Breadboards: A Meta Instructable by russ_hensel https://www.instructables.com/id/Comprehensive-Guide-to-Electronic-Breadboards-A-Me/