How to Make a USB Laptop Keyboard Controller




Introduction: How to Make a USB Laptop Keyboard Controller

This Instructable will provide a step by step procedure for building a USB laptop keyboard and touchpad controller. I created this guide and video to hopefully make it easier for people to re-purpose an old laptop. A typical laptop keyboard relies on the motherboard for the keyboard scanning and touchpad PS/2 circuitry. I use a Teensy microcontroller mounted on a connector board to take over this function. Teensies are often used by the mechanical keyboard enthusiasts at Geekhack and Deskthority and the TMK software is the most popular controller code. The TMK code is a bit of an overkill if you just want a simple USB keyboard but it will certainly provide all the features you could ever need. If you would rather write your own keyboard software using Arduino, the Teensyduino functions give you total USB control. Whatever software you decide to use, it will require a key matrix that maps out how your keyboard is wired. One approach, (that I never want to do again) is to exhaustively check every connector pin combination with an ohm meter while holding down each key. I did this when I converted a Sony Vaio into a Raspberry Pi laptop. An Instructable from alpinedelta disassembles the keyboard in order for the connections to each switch to be visually traced back to the connector. Instead of taking the keyboard apart or using an ohm meter, this Instructable will load the Teensy with an automated continuity tester. The Teensy will report over USB, the two pin numbers that are connected when you press a key. After every key has been pressed, the results can be transferred to a row-column matrix and used by the TMK keyboard controller software or a home-brew Teensyduino routine. The touchpad code described in step 22 can be added to the keyboard routine to create a composite USB device.

I will include download buttons for the relevant files in the Instructable but you can also go to my GitHub repository to view and download all files.

Step 1: Keyboard Cable Specifications

Laptop keyboards use a flexible printed circuit (FPC) that connects all the key switches in an array of rows and columns. The two bins of laptop keyboards shown above are from Re-PC, a local recycling store. About 75% of the keyboards have FPC cables that end with exposed metal traces on one side and a plastic backing on the other side. The plastic backing plus the FPC material typically measures about 0.30 mm thick. A typical keyboard without a number pad has 24 or 25 signal traces with a 1 mm pitch. If there is a number pad, then it’s common to have 26 traces with a 1 mm pitch. It can be difficult to measure the pitch between traces so another method is to measure the width of the entire FPC cable and use this formula:

Pitch = Total width / (N + 1) where N is the number of pins

A few of the keyboards at Re-PC had 30 to 34 traces and some had a 0.8mm or 0.5mm pitch. Connectors for 24 to 34 pin keyboard cables are readily available from companies like Aliexpress or Digikey. The number of signal traces and the pitch are the parameters you will need when ordering. There were some old keyboards in the bins with rigid printed circuit board connectors and some other keyboards with specialized connectors soldered to the end of the FPC cable. These keyboards will not be the focus of this Instructable.


I have added support for keyboards with up to 36 pins, 0.5mm pitch contacts, and dual FPC cables. See step 6 for details.

Step 2: Modify Your FPC Cable As Needed

Some FPC cables need to be modified to fit in a generic connector. Locking nubs on the side of the cable are easy to remove with scissors. If the FPC traces don't line up with the connector pins, use an X-ACTO knife to trim along the side of the cable. The Dell Latitude D630 keyboard needed the most modifications. It had a solder-less connector on the end of the FPC cable that was easily removed. Then I pulled off the extra thick plastic backing that was glued on the end of the cable and cut a notch on the side to align the contacts. To bring the thickness back to normal, I glued 2 pieces of paper to the end of the cable.

Step 3: Teensy LC FPC Connector Assembly - Surface Mount or Thru-Hole

I designed a circuit board using Eagle for the Teensy LC that routes its 26 I/O pins to 26 surface mount pads for an FPC connector with a 1mm pitch or a 0.8mm pitch. I created a second circuit board for keyboards that have a 0.5mm pitch. For those that don't want to solder surface mount connectors, I created the board shown on the right for thru-hole FPC connectors. A 24, 25, or 26 pin FPC connector can be soldered to these boards based on your needs. I avoided using the 27th Teensy LC output because it’s connected to an LED and 27 pin FPC connectors are rare.

After soldering the FPC connector to the board, I soldered 4 header posts to the board to support the corners of the Teensy and then I soldered the Teensy to the header posts. The last step was to connect the rest of the Teensy I/O signals to the board with 30 gauge wire. I used wire instead of header posts to make it easy to reroute I/O pins or cut the Teensy off the board. If you buy a Teensy LC with pins, it will not have pins on I/O's 24, 25, and 26 so you'll need to add them.

Step 4: Teensy 3.2 or 4.0 FPC Connector Assembly

I designed the back side of the board for a Teensy 3.2 with 34 I/O signals and an FPC connector with a 1 mm or 0.8 mm pitch. A different 3.2 circuit board is available if you have a 0.5mm pitch.

Whichever side of the board you mount the Teensy on, you must solder the FPC connector on the same side.

*****Update for the Teensy 4.0********

PJRC is now selling the Teensy 4.0 so I created a new circuit board for it that routes 34 I/O signals to pads for an FPC connector with a 1 mm or 0.8 mm pitch (see pictures above).

If your keyboard uses FPC pin 34, you must unsolder the LED near I/O 13 on the Teensy 3.2 or 4.0. If you don't unsolder the LED, it will interfere with the keyboard scan.

Solder the FPC connector to the 3.2/4.0 side of the board and then proceed to the next step.

Step 5: Teensy 3.2 and 4.0 Surface Mount Pads

The Teensy 3.2 and 4.0 use surface mount pads for I/O signals 24 thru 33 so it’s a little more work to solder them to the board. Solder “flying leads” to the surface mount pads on the Teensy 3.2 or 4.0 and then pass each wire thru the corresponding pad on the board for soldering. Finish the assembly by soldering wires to the remaining I/O signals.

For those that dislike flying leads, I redesigned the Teensy 3.2 board and Teensy 4.0 boards so that header pins can be used for the surface mount pads. The pictures above show how to modify a 2 x 7 right angle header. Note that you can still use flying leads with these boards.

For the Teensy 3.2, cut the header down to 2 x 6, then partially pull and cut the two pins on one end so they are straight as shown above. These 2 pins will help align the header. A small perf board with holes can also be used to hold the header in alignment while soldering the surface mount pads. You will need a long soldering iron tip in order to reach the pads.

For the Teensy 4.0, pull out the 4 right angle leads at the ends and replace them with 4 straight pins that will hold the header in the correct position. The remaining right angle header pins are a touch too long so I recommend they be trimmed in order to not overhang the surface mount pads of the Teensy 4.0.

Step 6: Order the Board and Components

You will need header pins, wire, solder, flux, and a USB cable for this project in addition to the 3 main components given below:

  1. The Teensy LC is $15.48, the Teensy 3.2 is $23.63, the Teensy 4.0 is $23.78 and the Teensy ++2.0 is $27.83 from PJRC.
  2. The surface mount FPC connectors from AliExpress are about $5 for a lot of 5. An example search on their website would be “laptop keyboard connector 1.0 spacing 24 pin”. Digikey is another source and you can specify whether the connector contacts are on the bottom or top. They also offer right angle or vertical orientation for the cable insertion. Here are examples for 3 different Molex 30 pin 1mm pitch connectors: CONN FPC BOTTOM 30POS 1.00MM R/A, CONN FPC TOP 30POS 1.00MM R/A, and CONN FPC VERT 30POS 1.00MM SMD. You should check the thickness at the end of your FPC cable with a micrometer. A common thickness is 0.30mm but sometimes the thickness is less so measure and order the appropriate connector.
  3. The Keyboard_Scanner_LT2.brd file can be downloaded below or from my repo. This board has pads for 1mm or 0.8mm pitch FPC connectors as well as pads for a 2 bit level translator in case you want your Teensy LC to talk to a 5 volt PS/2 touchpad (see schematic above). If you don't want the level translator, leave these pads empty. The hole spacing for the backside I/O signals has been adjusted so a right angle header can be used instead of flying leads. Fabrication of the circuit board costs $18 from OSH Park for a lot of 3 boards, or $8 from JLCPCB for 5 boards (if you choose economy shipping). OSH Park fabricates the boards in the United States and my order took 12 days to arrive. JLCPCB is in China and they took 18 days to ship the boards. JLCPCB offers HASL for the surface finish which is cheaper but not as good as the ENIG finish used by OSH Park. I have had no trouble with the HASL finish. The different PCB surface finishes are explained in this Optimum Design Associates post. If you don’t need to make any modifications, then you can send the Eagle file directly to OSH Park. To fabricate with JLCPCB, download the gerber zip file Keyboard_Scanner_LT2_2020-06-09 from my repo. Go to and select "quote now". Then select "add your gerber file" and load the zip file. I usually leave the next menu at the default settings except I adjust the quantity as needed.

Step 7: Other Board Variations

0.5mm pitch FPC connectors - I have created a board file called Keyboard_Scanner_LT_0p5.brd for keyboards with 0.5mm pitch FPC connectors (see picture above). This board will work with a Teensy LC on one side or a Teensy 3.2 on the other side. The Eagle file can be downloaded below or from my repo. To order this board from JLCPCB, use the gerber zip file Keyboard_Scanner_LT_0p5_2020-02-26 from my repo.

Teensy 4.0 - I have created an Eagle board file called Keyboard_Scanner_4p0.brd that will connect a Teensy 4.0 to a 1mm or 0.8mm pitch FPC connector. The Eagle file can be downloaded below or from my repo. The Teensy 4.0 has many new features and is much faster than previous microcontrollers. The Teensy 4.0 is not 5 volt tolerant but there are pads for a 2 bit level translator on the Teensy LC side of the board if you want to control a 5 volt PS/2 touchpad. To order this board from JLCPCB, use the gerber zip file Keyboard_Scanner_4p0_2020-02-26 from my repo.

Thru Hole 1mm pitch FPC Connector - I have created an Eagle board file called Keyboard_Scanner_LC_thruhole.brd that will connect a Teensy LC to a thru hole 1mm pitch FPC connector with up to 26 pins. The Eagle file can be downloaded below or from my repo. To order this board from JLCPCB, use the gerber zip file Keyboard_Scanner_LC_thruhole_2020-04-28 from my repo. The connector hole pattern on the board is designed for these AliExpress and Digikey connectors.

Teensy ++2.0 - I have created an Eagle board file called Keyboard_Scanner_2pp.brd that will connect a Teensy ++2.0 to an FPC connector with either a 1mm, 0.8mm, or 0.5mm pitch and up to 36 pins. You must un-solder the LED located on the Teensy so that it does not interfere with the keyboard software. The Eagle file can be downloaded below or from my repo. To order this board from JLCPCB, use the gerber zip file from my repo.

Step 8: Load the Continuity Tester Into the Teensy

  • Follow the PJRC link for installing Arduino and Teensyduino on your computer.
  • Download the Matrix_Decoder Arduino code. Use file Matrix_Decoder_LC.ino for a Teensy LC, Matrix_Decoder_3p2.ino for a Teensy 3.2, Matrix_Decoder_4p0.ino for a Teensy 4.0 or Matrix_Decoder_2pp.ino for a Teensy ++2.0.
  • Load the Matrix_Decoder code into the Arduino integrated development environment (IDE).
  • Connect a USB cable from the Teensy to the computer. Your computer should automatically load the necessary USB drivers.
  • In the Arduino IDE, under “tools”, select board: Teensy LC, 3.2, 4.0, or ++2.0 depending on what you’re using. Also under “tools”, select USB type: Keyboard. If you forget to do this step, you will get an error message that says "Keyboard was not declared in this scope".
  • Compile and load the Matrix_Decoder code into the Teensy. If it’s your very first time loading the Teensy, you’ll have to push the button on the Teensy to enable the loader.
  • Disconnect the USB cable from the Teensy.
  • If you are using a Teensy ++2.0, you must unsolder the LED on the Teensy so it does not interfere with the scan.

Step 9: Load the Key-List File in the Editor

Open a text editor on your computer. I like to use Notepad++ on Windows or Geany on the Pi because they have column editing.

Original Method:

There are two “key-list” text files you can download, named Keyboard_without_number_pad and Keyboard_with_number_pad. The “key-list” file should have every key that you will push followed by tabs to make the results more readable and easy to copy into a spreadsheet.

New Method:

Marcel Hillesheim has written a Python program that takes much of the manual labor out of my original process. The latest version of his program includes a menu which selects the Teensy LC, 3.2, or 4.0 (but not the Teensy ++2.0). The Python program is at his GitHub repo along with two blank key-list files that use the PJRC key codes. If you're comfortable running Python, download the key list text file (with or without number pad) and the matrixgenerator Python program. It will save you a lot of time.

Modify as needed:

You may need to modify the key list file slightly to match your keyboard’s keys. A non-US keyboard can still use this routine, just make a list of your keys and the Teensy will report pin connections. The GUI key is either the "windows key" from a PC or the "clover key" from a Mac. Place the cursor to the right of the very first key in the list as shown above. This will determine where the Teensy begins to display the pin numbers as you push each key.

French computers require the shift key to be pushed in order to display the numbers 0 thru 9. I have made French matrix decoder code for the Teensy LC, 3.2, and 4.0 that takes care of the shift key so that numbers are displayed instead of @ " ' ( - _ etc. You can find this code at my Github repo.

Step 10: Connect the FPC Cable

Inspect your FPC connector to determine the correct orientation for the cable.

If your FPC connector has contacts on the bottom like the picture on the left, use your finger nail to gently lift the connector locking bar to the open position. Slide the FPC cable into the connector with the bare metal contacts pointed down (closest to the board) and the plastic backing strip pointed up. Lock the cable to the connector by gently pushing the bar down. The locking bar mashes the bare metal of the FPC cable down against pins on the bottom of the connector.

If your FPC connector has contacts on the top like the picture on the right, use your finger nail to slide the locking bar to the right. Insert the cable into the connector with the bare metal contacts pointed up and the plastic backing strip pointed down. The orientation is opposite from the first picture because when the locking bar is slid to the left, it pushes the cable up against pins on the top of the connector.

Connect a USB cable from the Teensy to the computer and wait 20 seconds for the Teensy to be recognized as a USB keyboard. This delay is in the code to make sure your computer is ready to receive numbers from the Teensy. If numbers are reported on the screen before any keys are pressed, these pins are shorted together and must be fixed. It may be a solder short on the connector which you can check by retrying without the keyboard connected. If it is still shorted without the keyboard, use flux and solder wick on the shorted connector pads. If the short goes away when the keyboard is removed, these pins are most likely ground pins that are tied together in the keyboard and must be excluded from the routine. Adjust the max_pin or min_pin values in the code to allow the routine to skip over these pins.

If your keyboard has shorted pins that are in the middle, adjusting max_pin or min_pin will not fix the problem. In that case load the Matrix_Decoder_LC_alternate, Matrix_Decoder_3p2_alternate, or Matrix_Decoder_4p0_alternate routine. These routines allow you to exclude any pins necessary to avoid shorts.

If you are using a Teensy ++2.0 and you get the numbers 1 and 15 reported on your screen, you forgot to unsolder the LED located on the Teensy. The Teensy 3.2 and 4.0 will report 1 and 34 as shorted if you are scanning a 34 pin keyboard cable and the LED has not been removed from the Teensy.

If certain keyboard keys do not give a response when pressed, it is usually caused by a bad solder connection, tarnished cable, or misaligned contacts. To prove the code will report all possible pin connections, use a small flat screwdriver to momentarily short pads 1 and 2 at the FPC connector, right on top of your solder joint. Move on to pads 2 and 3, 3 and 4....., proceeding up to the last two pads, taking note of any pad numbers that don't work. For the pads that don't give a response, reheat the solder joint on the FPC connector pad and if necessary, at the header pin on the Teensy. For the Teensy LC, don't forget to add header pins on I/O's 24, 25, and 26. Use the pin translation table in step 14 to map the FPC pin number to the I/O number on the Teensy. Keep fixing your solder joints until you get a response for every pin when you short them with a screw driver. If some keyboard keys are still not working, there may be a bad connection to the FPC cable. Gently clean the FPC cable with an eraser if the metal traces look tarnished. Use a magnifying glass to inspect inside the FPC connector to see if the contact points are in alignment with the cable traces. You may need to trim the side of the FPC cable to get the proper alignment. If alignment looks good, push down on the FPC connector or lift up on the cable while trying the bad keys to see if you can sometimes make them work. You may need to add a thin piece of paper to the plastic backing on the FPC cable to get a tighter fit. Erratic keys can sometimes be fixed by popping off the key cap and cleaning with isopropyl alcohol. Sometimes the keyboard has a bad key switch that will not give a reliable response, no matter what you do. The only solution is to replace the keyboard.

Step 11: Test the Keyboard

Press each key, one by one on the test keyboard as listed on the editor screen. The Teensy will send two pin numbers over USB that were connected when the key was pressed. The Teensy will then send a down arrow to position the cursor for the next key. If you make a mistake, just use your PC keyboard and mouse to erase the error and re-position the cursor. After pressing every key on the keyboard and confirming that pin numbers were given for all, save the finished file for analysis. At this point you've created a very thorough keyboard tester.

The original key list on the left gives every key and the results are in columns for transfer to a spreadsheet. Marcel's key list on the right uses the PJRC key names to make it easier for his Python program to build the matrix. If a key is listed that is not on your keyboard, use your mouse or arrow keys on your PC to move the cursor to the next key. The Python program jumps over the unused keys so there's no need to edit them out manually. If you want to assign Media keys (a key event associated with the FN-key), push the media key (do not push the FN key). The letters "FN" are between the media keyname and the pin numbers to let the Python program know this belongs in the media matrix.

Step 12: Determine Input and Output Pins

If you are using Marcel's Python program, it will automatically determine the input and output pins. The completed pin list file should be in the same directory as the Python program so the start up menu (shown above) will list it. To load and run his Python 3 program on a Raspberry Pi 4, use the Thonny IDE under the programming tab. The results will list the FPC connector pins that are inputs (columns) and the pins that are outputs (rows) plus it does the translation to the selected Teensy I/O numbers. The key codes are automatically placed into arrays for easy cut and paste into a USB keyboard routine (see matrix examples above).

If you still want to use the manual procedure to generate the key matrix, the following instructions will determine the keyboard pins based around the Modifier keys; Control, Alt, Shift, GUI, and Fn. As a general rule, 8 of the keyboard pins will be inputs to the Teensy and the remainder will be outputs. The Modifier keys usually have an output row all to themselves which allows these keys to be held down while other keys are pressed. This avoids a sneak path which would cause ghosting. These “rules” are not always followed (especially by the Fn key) so you may need to do some trial and error as you build the matrix. I have lots of keyboard examples at my Github repo to help you out.

Control-Left and Control-Right will have a common pin between them. Example:

Cntrl-L 19 20

Cntrl-R 20 22

The common pin, Pin 20 in this example, will be a Teensy output, and 19 & 22 will be inputs.

Similarly Alt-Left and Alt-Right will have a common pin between them, just as Shift-Left and Shift-Right will also have a common pin. Example:

Alt-L 7 24

Alt-R 7 15

Shift-L 21 23

Shift-R 23 25

The Alt common pin will be a Teensy output, and 15 & 24 will be inputs.

The Shift common pin will be a Teensy output, and 21 & 25 will be inputs.

The GUI key is usually a single key as in this example;

GUI 9 26

Search all the other pins in the list to see if 9 or 26 are used on other keys. In this example, pin 9 was not used for any other key which means it will be a Teensy output and 26 will be an input. Sometimes both pins are used for other keys but one of the pins is used for common keys like letters and numbers and the other pin is used for less-common keys like page-up. In this case the pin used for common keys will be a Teensy input and the other pin will be an output. Note that the GUI key will still work if you swap the pins.

The Fn key is also a single key as in this example;

Fn 12 18

Using the same approach as the GUI key, search all the other pins to see if 12 or 18 are used on other keys. In this example, pin 12 was not used for any other key therefore it will be an output and 18 will be an input. If both pins are used on other keys, follow the same rules as the GUI example. Sometimes both of the Fn pins are used by common keys which means you can pick either pin as an input and the other as an output.

The eight input pins for the HP DV9000 example keyboard have been identified as; 15, 18, 19, 21, 22, 24, 25, and 26. All other pins will be Teensy outputs. Make a keyboard matrix table like the one shown above with the 8 input pins across the top in ascending order and all the other pins as outputs on the side, also in ascending order.

The orientation of the keyboard matrix is just my personal preference. You can swap the rows/columns and inputs/outputs if you want. Swapping pins may be necessary if you have a rare laptop keyboard that has diodes for each switch. With diodes, you need to make sure the cathode (first pin listed) is designated an output from the Teensy and the anode (second pin listed) is designated an input to the Teensy.

Sometimes only 7 pins can be identified as inputs because two modifier keys share the same input pin (usually the Shift-R and Control-R). If this happens, you’ll have to make an educated guess for the 8th input. I've even seen keyboards that had the same two input pins for the Shift, Alt, and Control keys so after determining the GUI and Fn input pins, only 4 inputs were identified. For some keyboards, the input pins are grouped together (i.e., 17 thru 24) which makes it easy to fill in the missing pins. Other keyboards have no grouping of pins which means you’ll have to begin filling out the matrix with some inputs missing. The remaining input pins will be revealed when some of the keys can’t be placed in the matrix. Keyboards with dual FPC cables have the input pins on one cable and the output pins on the other cable.

Step 13: Fill the Matrix With Keys

To manually fill the matrix, place each key name at the row/column intersection of the pins as shown in the HP DV9000 keyboard example given above. The modifier keys are in bold to make it easy to see that they have a row all to themselves. This keyboard followed the “rules” exactly.

You don't need to fill out the matrix if you're using Marcel's Python 3 program.

Step 14: Translate FPC Pin Numbers to Teensy I/O Numbers

Marcel's Python program automatically translates the FPC pins to the Teensy I/O's. If you are using the manual method, you will need to use the Teensy LC, 3.2, or 4.0 tables shown above. The Teensy ++2.0 uses the manual method. Notice that there is an LED on the Teensy 3.2, 4.0, and ++2.0 that must be removed if you are using that I/O pin.

Step 15: Load a USB Keyboard Routine Into the Teensy

A Deskthority post from "flabbergast" describes using the ChibiOS development environment to configure TMK for ARM based processors like those used on the Teensy. A toolchain such as the GNU ARM Embedded Toolchain is used to compile the Teensy code. You will need to install the ChibiOS development environment per these instructions. The teensy_lc_onekey example details the steps to create a working TMK build. The QMK keyboard routine is based on TMK and it also has ChibiOS support for the Teensy LC and 3.2. There is a Complete Newbs Guide for QMK.

Jay Thompson has created a QMK fork that gives all the information for his Teensy 3.2/Lenovo T420 keyboard project. Jay provides his build environment setup and the make instructions so you have an example to modify for your keyboard.

Gordon has made a Hackaday.IO project called "QMK Powered Laptop Keyboard" which details the "gymnastics" of using QMK.

The TMK/QMK keyboard software is very powerful with tons of features but it can be confusing, (at least to me). As an alternative, I wrote an Arduino USB keyboard routine using the Teensyduino “Micro-Manager” functions. There's just 1 file to load using the Arduino IDE and it's only about 385 lines with lots of comments. I'm a hardware guy so expect ugly code but it provides a basic keyboard controller with 6 key rollover that you can modify to suite your needs. The files named "Instructions for modifying the Teensyduino LC code, Teensyduino 3p2 code, Teensyduino 4p0 code, and Teensyduino pp2p0 code" describe the changes you need to make for your matrix. The instructions also detail how to use the results from Marcel's Python program.

Every keyboard listed below has a folder at my repo containing a Teensyduino USB keyboard routine giving you lots of examples to follow. Use the links to my repo to view and download these files. The 1525, 2100, and DV9000 folders also have Marcel's completed key list file and the results from his Python program. The D630 folders include a Teensy 4.0 keyboard controller routine in addition to a Teensy 3.2 routine. The Sony Vaio PCG-K25 folder includes a Teensy ++2.0 keyboard controller routine in addition to a Teensy LC routine.

IBM380ED - Brian Chan and I teamed up to convert an IBM 380ED keyboard and trackpoint to USB as shown in this video. The code, Eagle files, and project description are in a folder at my repo. This project was documented at Hackaday.IO and Stephen designed a stand alone case for the 380 that you can 3D print with his files at thingverse. Brian has converted his IBM 380ED into a KVM, documented at Hackaday.IO.

Commodore 64 - Olga modified my code for a Commodore 64 keyboard. The Teensy LC code, key list files and project description are in a folder at my repo.

Compaq 286 - Olga also modified my code with an old Compaq 286 keyboard but he did much more. Now the program will take the pin number results from running the keylist text file so you don't need to create a key matrix. The code and PDF description are in a folder at my repo.

Blackberry Q10 & HP Jornada & Atari Porfolio - T Caschy has modified my Teensy code to work with these keyboards. The code is in a folder at my repo.

Lenovo Y480 - Luigi Caradonna has modified my Teensy LC code to work with a Lenovo Y480 with an Italian layout. The code is in a folder at my repo. Luigi also made a stunning marble base for this keyboard. Pictures are in the "I made it" section at the end of this Instructable.

Apple eMate 300 - Billy the Kid has modified my Teensy code to work with an Apple eMate 300 keyboard. The code is in a folder at my repo. Pictures are in the "I made it" section at the end of this Instructable. Check out his very thorough video plus reviews from Cult of Mac and The Register to see how he made a Raspberry Pi laptop from an Apple eMate 300.

Apple Macinstosh Powerbook models 140 through 180c - Billy the Kid used a Teensy 3.2 to talk to this Apple keyboard and trackball. Pictures are in the "I made it" section at the end of this Instructable. The trackball uses an Apple Desktop Bus (ADB) interface that is controlled by the Teensy after it scans the keyboard matrix. The Teensy code is in a folder at my repo.

GriD 1550 - SimonT192 has modified my Teensy LC code to work with a GRiD 1550 keyboard with a UK layout. This laptop has a rotary encoded "IsoPoint" mouse which has been converted to USB using a Teensy LC. The code for the keyboard and mouse are in a folder at my repo along with a PDF describing the operation. Watch Simon's YouTube video for a very detailed description of his "Aliens Sentry Gun" GRiD laptop build. Hackaday featured his project as well.

Thinkpad T43 - Nat has modified my Teensy code to work with a Thinkpad T43 keyboard and he has created a new Teensy 3.2 connector board using KiCad. The code, layout, and PDF description are in a folder at my repo.

Step 16: Non-Standard FPC Cable Connectors

If your keyboard has a non-standard FPC cable like the Thinkpad connectors shown above, the task becomes more challenging. If you can't find a mating connector at Aliexpress or any other site, your only alternative is to remove the connector on the laptop motherboard. A common method is to put flux and low melt solder such as ChipQuik SMD removal alloy on all the joints, then use a hot air rework station and tweezers as shown in this video. You will need to make a board layout that routes the Teensy I/O signals to your keyboard connector. I like to do a preliminary layout on paper first in order to place the parts and route the signals with the fewest via's. It's easy to assign the Teensy I/O pins in software based on whatever pin order makes the layout work best. It's tempting to make the layout next, but do the schematic first so your layout will have air-wires showing you how to route each trace. I didn't make a schematic for the keyboard scanner board because of the confusing front side LC/back side 3.2 routing. The downside of not having a schematic was the lack of any verification that the layout was electrically correct. I had to triple check everything before sending the file out for fab.

Eagle, KiCad, PCBWeb Designer, EasyEDA, and DesignSpark PCB are some of the free layout tools that are available. Sparkfun has excellent tutorials for Eagle schematic and layout. Also look at the Adafruit tutorial on creating parts in Eagle because you'll need to make a package and symbol for your connector. After you get your layout fabricated, you'll need to change the Matrix_Decoder software to work with the new I/O pin-out.

Step 17: Teensy 3.2 Controller for a Lenovo Thinkpad T61 Keyboard

A perfect example of a non-standard FPC cable is the 44 pin connector used on the Lenovo Thinkpad T61 laptop. There are at least three web sites that detail how to make a USB controller for a Lenovo keyboard. An Instructable from rampadc uses a connector board with some glue logic and wires to an Arduino. A later Instructable from rampadc uses a single board with an MSP430 microcontroller. Mark Furland from Tome uses a connector board with wires to an Arduino. Mark's web site states that a Digikey WM6787CT-ND connector will work with the keyboard FPC cable. This saved me from having to unsolder the connector from the motherboard. It was pretty easy to search online and find a schematic for this laptop due to its popularity. Without the schematic or the info from rampadc, I would have been doing a lot of probing with an ohm meter to determine the ground pins and narrow down which pins needed to be scanned for the key matrix. I really like the feel of this keyboard which made it worth the effort to design the Teensy 3.2 circuit board shown above. I modified the Matrix_Decoder scanning software to only scan the 8 input pins and 16 output pins from the matrix. The scanning software produced a connection list that was turned into a key matrix table using the same steps described earlier in this Instructable. The Fn switch has its own two pins on the connector that are scanned separately from the key matrix. The Trackpoint on the keyboard needs PS/2 clock and data signals from the Teensy plus a reset signal when power is applied. The Teensy 3.2 is 5 volt tolerant so it can directly drive these signals. All of the T61 3.2 files are at my repo or can be downloaded with the buttons below. My repo also has a zip'ed gerber file for fabrication at JLCPCP.

Nathaniel has modified my board design for an IBM T43 keyboard which has a larger 40 pin connector. Pictures of his board are at the end of this Instructable in the "I made it" section. All of his design files can be found in a folder at my Github site.

Step 18: Teensy LC Controller for a Lenovo Thinkpad T61 Keyboard

I wanted to build a standalone T61 Keyboard on a block of wood but the 3.2 circuit board from the previous step needed the connector and Teensy re-positioned so the circuit board would be hidden underneath the keyboard. I figured while I'm at it, I should change over to the LC and save some money. The Teensy LC has fewer I/O signals and they are not 5 volt tolerant so I needed to make some design changes. I added a TLV810 to generate a reset for the trackpoint plus a couple BSS138 FETs as level translators for the trackpoint clock and data. To save an I/O pin, I wired the Fn switch into an empty cell in the matrix so it can be scanned with all the other keys. There was one Teensy I/O pin left to drive the Caps Lock LED. All of the T61 LC files can be downloaded from my repo or use the download buttons below. My repo also has a zip'ed gerber file for fabrication at JLCPCP. For an even smaller Teensy LC T61 controller board, check out Martin Refseth's Github repository. He has taken my board design and shrunk it down to be the same size as the Teensy. A picture of his board is at the end of this Instructable in the "I made it" section.

Step 19: Keyboards With Two FPC Cables

If your keyboard has two FPC cables, you may be able to insert them side by side in one FPC connector. If this won't work, there are other options:

I designed the Keyboard_Scanner_Dual board shown above with a Teensy LC on one side for keyboards like the Panasonic Toughbook CF-48 which has 2 separate 1mm pitch FPC cables that are on top of each other (not side by side). The other side of this board is for a Teensy 3.2 with 1mm and 0.8mm pads for FPC connectors placed side by side. This Eagle file can be downloaded below or from my repo. To order the board from JLCPCB, use the gerber zip file at my repo.

If you don't mind soldering a lot of wires, you can use the FPC breakout board shown above for one of the keyboard FPC connectors and put the other keyboard FPC connector and a Teensy on the regular board. The front side of the breakout board will accept an FPC connector with up to 18 pins and either a 1mm or 0.8mm pitch. The back side of the board is for a 0.5mm pitch FPC connector. This approach will allow you to place the breakout board in whatever location is needed by the keyboard cables. The FPC_18pin1mm.brd Eagle board file can be downloaded below or from my repo. It only costs $3.75 to order 3 boards from OSH Park. The gerber zip at my repo can be used to order from JLCPCB.

Your final option is to make a new layout like I did for the Lenovo 380 Keyboard shown above. A complete design description and Eagle board/schematic are at my repo. This could serve as a starting point for a new board layout and you can add other circuitry like a trackpoint interface or backlight connector.

Step 20: Building a Keyboard Base

If you're not going to use the original laptop case to mount your USB keyboard, you can build a custom base like the ones shown above. Luigi Caradonna has made a stunning marble base using the CNC milling machine from his work. If you are lucky enough to have a 3D printer, you can make a custom case like TheGreenMamba's beautiful X61 Thinkpad keyboard. His 3D print files are at thingiverse. tcaschy has made a few 3D printed cases including the one shown above for a Blackberry keyboard with a Raspberry Pi Zero and LCD. Harjoc used acrylic to make a cool see-thru base. The Thinkpad T43 keyboard shown above has been mounted on a wood base by "Than the FIT man". All of these projects are documented further in the "I made it" section at the end of this Instructable. I made a Thinkpad T61 keyboard base using 3 sheets of 1/4" plywood. I've also built wood bases for the Toshiba 2415 keyboards shown above and documented at my repo. Warren has chiseled a wood base for a Dell Inspiron 1420 that is pictured on the PJRC forum with code at his Github repo.

Step 21: Keyboard Backlight

If your keyboard has a backlight, it can be controlled by the Teensy, as long as you have a spare I/O pin left over. The backlight brightness will be controlled using a pulse width modulated (PWM) signal that drives the gate of an N-FET (see schematic above). The N-FET will handle the high current needed by the backlight LED. Only certain Teensy I/O pins are PWM capable so you may need to swap an I/O from the keyboard. Swapping I/O's is easy if you use wires instead of header pins to mount the Teensy to the board. The backlight signals from the keyboard usually come out on a small FPC cable that is separate from the row/column keyboard cable. You can glue a small connector on a blank board and solder wires to it but the fine pitch makes it difficult. I have designed two small connector breakout boards that make it easier to hook up the backlight cable. The Eagle board files can be downloaded below or from my repo and cost less than $3 to fabricate at OSH Park. One board will take an FPC connector with up to 10 pins and a 0.5mm pitch like this Molex connector. The other board will take an FPC connector with up to 8 pins and a 1mm pitch like this Molex connector. On the backside of each board are pads for a 1206 style current limit resistor and an MMBF170 N-FET. I’ve used a ½ watt, 22 ohm resistor but you should experiment to find a value that gives good brightness without excessive current. Set your ohm meter to diode mode so you can determine which pins are the anode and cathode. There are usually multiple pins for each in order to handle the current. Wire the anode pins to 5 volts and the cathode pins to the pad labeled “Drain” (which goes thru the 1206 resistor). The N-FET source is tied to the pad labeled “Ground” and should be jumpered to Teensy Ground. The pad labeled “Gate” should be jumpered to the Teensy I/O pin that will drive the PWM signal. Your code will need to set the PWM frequency. Don’t make it too low or it will flicker. To set the PWM on pin 23 to 400Hz, use the following:


The PWM duty cycle can range from 0 (fully off), to 255 (fully on). To set the PWM on pin 23 to 80%, use the following:

analogWrite(23,205); // 205/255 = 80%

Use a variable for the PWM duty cycle so it can be modified with an Fn-Function key press.

Step 22: Touchpad and Trackpoint

The touchpad or trackpoint PS/2 signals can be converted to USB with an off-the-shelf converter as shown in numerous videos. If you also want to convert a laptop keyboard to USB, then it makes sense to combine these tasks with a Teensy and only use 1 USB port. PJRC has created mouse functions in Teensyduino so the USB coding is easy. I wrote code for the Teensy that bit-bangs two I/O pins to make the clock and data for the touchpad PS/2 bus. You can download my touchpad code below or from my repo. In the Arduino IDE, under "Tools", set the code to the Teensy model you are using and to "Keyboard+Mouse+Joystick". Compile and load the code into the Teensy. The code sets the touchpad up to be polled at a regular rate to see if any movement or button presses have occurred. This makes it easy to merge in with the keyboard scanning code, which also repeats at a regular rate. The Thinkpad T61 shown earlier uses this method to merge the keyboard and PS/2 trackpoint code. The Dell Latitude D630 keyboard code below or at my repo has also been merged with the touchpad code. It can be difficult to figure out the touchpad's clock, data, power, and ground pins if you don't have a schematic so I wrote a step by step procedure to identify the pins. This guide also describes how to use a level translator for the clock and data signals when using a Teensy LC or 4.0. These Teensy microcontrollers are not 5 volt tolerant like the Teensy 3.2 and require a voltage translation to control a 5 volt touchpad. You can use a translator like the Adafruit 757 or build your own by soldering BSS138 FETs and 10K resistors on the surface mount pads I put on the Teensy LC side of the keyboard scanner board. For a quick and dirty cable solution, the clock, data, power, and ground wires from the Teensy can be soldered directly to pads on the touchpad. If the touchpad has an FPC connector and cable, you can use one of the breakout boards from the previous step to provide access to the 4 signals that go to the Teensy. An example of a breakout board for a Toshiba 2415 touchpad is shown above. The composite keyboard and touchpad code for the Toshiba 2415 is at my repo.

If your trackpoint/pointing stick does not output PS/2, it may only provide the 4 signals from its strain gauge resistors. The Dell D630 pointing stick code and PDF at my repo shows how to translate the strain gauge voltage to USB using the ADC in the Teensy. Old Thinkpad trackpoints like the 380 can be converted to USB as documented in my Hackaday.IO project.

Step 23: Conclusion

The next step after getting the original keyboard and touchpad working is to add a video converter card to drive the LCD and make a keyboard, video, mouse (KVM). A KVM is often used to troubleshoot servers and the one shown above is from a Dell D630 laptop. I also added a Raspberry Pi inside the case to make a stand alone laptop. This build is described in my KVM Instructable. The Toshiba 2415 laptop shown above was converted into a KVM in order to display the HDMI video from a desktop PC as well as send the keyboard & touchpad data over USB. The documentation and code for this build is at my repo.

If you really want a challenge, check out my Instructable to make a "Battery Powered Raspberry Pi in a Repurposed Laptop". In addition to describing the Lithium battery charger shown above, there is Pi software to read the battery status registers over an SMBus and display a fuel gauge.

I hope you find this Instructable useful for re-purposing your old laptop. Leave a comment below if you have any questions, comments, or corrections.

Good Luck

Frank Adams

First Time Author

Participated in the
First Time Author

23 People Made This Project!


  • Pets Challenge

    Pets Challenge
  • Summer Fun: Student Design Challenge

    Summer Fun: Student Design Challenge
  • Fandom Contest

    Fandom Contest



Reply 4 weeks ago

Yes you can use two of these boards with hookup wires to the Teensy. One board would have a 20pin connector and the other would have a 12 pin connector. I see some of the traces on the FPC cable are "dead ends" and don't go to the keyboard so you don't need to wire them to the Teensy. Likewise, I see two adjacent traces that are tied together so you will only need to wire one of them to the Teensy. First guess looks like you will need 22 wires so a Teensy LC would work.
I'm not sure from the picture but it looks like the 20 pin FPC cable has contacts on the top and the 12 pin FPC has contacts on the bottom and both are 1mm pitch (check to be sure). Depending on how you fold the cables when inserted, you will end up with one connector that has top contacts and the other with bottom contacts. Remember to not wire up to Teensy I/O #13 because it has an LED onboard. You can use that LED for Caps Lock indication. If you wire the Teensy I/O's in lowest to highest order, then you will need to modify the translation Python code. If you don't want to deal with that then I suggest you wire the I/O's per the Teensy LC translation table on step 14. Start at one end of the 1st connector and wire each (usable) pin to Teensy I/O's as listed in the table (23,0,21,1,24,2,etc.) Continue wiring to the last pin of the 2nd connector. Doing this will allow you to use the Python code without modification. Let me know if you have any more questions. Good Luck!


8 weeks ago

Hello Mr Adams

I've just managed to get an Apple eMate 300 Keyboard up and going thanks to your instruct able:) Do I just email you the information? I was a bit bummed at first because I thought you had left me hanging when you started talking about Tmk and Qmk, I spent several hours researching those, THEN I read the rest of your directions, and yep, my keyboard worked on the first try:) I modified your Dell Inspiron 1525 ino. Thank you again, after reading through your directions again, I just realized how really easy and universal it is:)


Reply 8 weeks ago

Hello Billy67, I'm glad you got your keyboard working. Please send in a picture to the "I made it" link above and send your finished code to my email at I'll upload it to my repo for others to use.
I never have figured out how to use TMK/QMK but the software weenies swear by it so I had to describe it first before showing my crude Arduino code.


2 months ago on Step 23

Hi Brother , Warm Greetings from India .

I'm going to start a project on my old laptop keyboard to Bluetooth controlled one or USB Controlled one for all of my Android devices such as Mobile , Tablet PC . I need ideas and comments from all who done this project .

Also try to provide suitable links , PCB design layouts , cpmponent lists for my project .

I am attaching my keyboard photograph which is removed from my Acer Gateway NE46Rs Laptop . Keyboard is Chicony Make & Model ID is MP-10F88US-F512 .


Reply 2 months ago

I have not done a Bluetooth keyboard yet but I would recommend that you first follow the steps in this Instructable to build a USB keyboard. This will help you figure out the key matrix and gain experience with your keyboard.


Reply 2 months ago

How to calculate the terminal leads in ribbon cable .


Reply 2 months ago

From your picture, I see a 1mm pitch cable with 23 signal leads and extra space on one end for a 24th unused pin. The Teensy LC would be the lowest cost (and simplest) controller to use. You will need a 24 pin 1mm pitch FPC connector. The picture below shows the easiest connector board to solder. Per step 7, this board will connect a Teensy LC to a thru hole 1mm pitch FPC connector. To order this board from JLCPCB, use the Gerber zip file Keyboard_Scanner_LC_thruhole_2020-04-28 from my repo, here
The connector hole pattern on the board is designed for this Aliexpress connector,
Buy the 24 pin version and install it in the board starting at pin 1 (leave pins 25 and 26 on the board unconnected).
Follow the Teensy LC steps in this Instructable for decoding the key matrix and creating the USB controller code.


Question 5 months ago on Step 4

Hi! I have two keyboards with 30 and 32 pins, so I should use Teensy 3.2, but I haven't found circuit board for 30 or 32 I/O FPC connector's. So should I modify your Keyboard_Scanner_LT2.brd circuit board scheme to use 30 or 32 I/O, and should I ignore superfluous I/O pins on Teensy 3.2? Thanks a lot!


Answer 5 months ago

No need to modify the Keyboard_Scanner_LT2 board. Use it with a Teensy 3.2 and solder the 30 or 32 pin FPC connector starting at pin 1. Leave the unused pads empty.


Question 10 months ago

Hi. I'm working on an iBook Clamshell project. I got the track pad to work with a ps2 adapter. I just need to do the keyboard now. Will this work? Thanks!


Answer 5 months ago

Hi steelers160, look at my answer to pjpetrozelli for more guidance and a possible solution.


Answer 10 months ago

I can't tell for sure from pictures online but I think there is a proprietary connector on the end of the FPC cable. If that's the case, you will have a hard time finding a mating connector that will fit the keyboard. Your only option is to unsolder the connector from the old motherboard. This connector probably has a unique pin layout that will require a new circuit board that routes the signals to the Teensy. This board will be similar to the boards I did for the T61 Thinkpad keyboard. Once you have the connector and circuit board, you will be able to modify my software to give the pin connections when you push a key. Then you can build the key matrix and use my USB Keyboard code.


Reply 5 months ago

Hi there, I am also trying to modify an iBook G3 Clamshell keyboard for modern use. I'm not sure if the connectors are proprietary or not but they are 40 pins and look like this (attached). This connector looks vastly different when compared to the 40 pin connector from the T43 project above.


Reply 5 months ago

I third steelers160's post, I too am trying to figure out how to get this 40 pin Apple connector converted over to USB. The layout looks pretty different from the T43 40 pin. Any guidance on how to make this work would be extremely appreciated.


Reply 5 months ago

Hi mike197, look at my reply to pjpetrozelli for guidance.


Reply 5 months ago

Nice pictures. If you can take some measurements to determine the pitch and row to row spacing, it would help. If the pitch is 0.1 inch, then 2 of these single row connectors cut down to 20 pins would work:
Or a single 2 x 20 header like this one:
The 2 x 20 would be best but I'm not sure if the pin on your keyboard connector is long enough or the right diameter. The quickest way to know if they will work is buy them both and see which one works the best.

Once you have a connector that will work with your keyboard, I can modify one of my board layouts for this keyboard or give you guidance to do it yourself. The problem is that 40 pins is too many to wire up to a Teensy so you've got to figure out which of the 40 pins are essential to scanning the keyboard matrix. With the keyboard disconnected, connect your ohm meter (-) lead to motherboard ground. Then measure and record the resistance to ground on each of the 40 motherboard connector pads. You are trying to find out which connector pins are tied to ground as well as any that act like you are charging power supply caps. Next look for wide motherboard traces that tie 2 pins together (like pins 36 and 38 in the picture). These wide traces are probably not part of the keyboard row column matrix and may be ground pins or power pins for the keyboard Caps and Num Lock LEDs. Lastly, look at the FPC cable and see if you can tell which pins do not have any traces (no-connect).

There are 3 people that have shown interest in this keyboard so send me an email if you want to proceed with this project. Perhaps a group buy for the PCB would be a good idea.
Let me know


6 months ago

Hi Frank, I am looking at repurposing a keyboard I like from an old Vadem Clio. I ran across your instructable and this looks like exactly what I need. However my keyboard has two separate cables, so it looks like I can't actually leverage your board design. Any suggestions? I am going to get a ribbon cable and manually wire it I guess.


Reply 6 months ago

The 14 pin cable will be the Teensy output rows and the 10 pin cable will go to the Teensy input columns. If the FPC cables have a 1mm pitch, then you can mount the row connector on a regular Teensy LC board. Use a separate 1mm pitch bare board for the 10 pin connector and run wires from it over to the Teensy. Check out step 19 where it says:
"If you don't mind soldering a lot of wires, you can use the FPC breakout board shown above for one of the keyboard FPC connectors and put the other keyboard FPC connector and a Teensy on the regular board. The front side of the breakout board will accept an FPC connector with up to 18 pins and either a 1mm or 0.8mm pitch. "

If your FPC cables have a 1.25 mm pitch, then use two boards from the Toshiba T1200 shown at this link.
Mount the Teensy LC on the board for the 14 pin cable and no Teensy on the board for the 10 pin cable but run 10 wires over to the Teensy.