## Introduction: How to Multiply Like Chinese, the Easy Way! (Fast and Fun)

Ancient Chinese were one of the biggest inventors, we all know about black powder, paper, etc. all Chinese. But did you know about chinese way of multiplying?

Here's how, its fast 'n' easy and it works with equations from 1x1 to 3856x2955, etc. Just about anything!

These is a technique I found very useful in Mathematics to do large multiplication without burning our brains so thats why I decided to post it in the Back to school contest:

PLZ VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

thanks, now we can go on!

Here's how, its fast 'n' easy and it works with equations from 1x1 to 3856x2955, etc. Just about anything!

These is a technique I found very useful in Mathematics to do large multiplication without burning our brains so thats why I decided to post it in the Back to school contest:

PLZ VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

thanks, now we can go on!

## Step 1: Example

Here's an example of just a simple multiplicatn, 2x2. these is kind of what your multiplicatins will look like, but don't worry just yet, we'r gonna find out what those drawings mean and how are they done.

## Step 2: First Lesson: 22x22

Here we see just four crossed lines that probably wont mean much to you, but thats the harder thing, the lines! (It looks kinda easy hah)

Heres how its done:

First: write down your multiplication.

Second: draw the lines according to the numbers in the multiplication. (see 2nd picture for explanation)

Third: Divide the lines in sectors and sum the points in each sector, then sum each sector's numbers to get the answer. (see 3rd picture for explanatin)

Heres how its done:

First: write down your multiplication.

Second: draw the lines according to the numbers in the multiplication. (see 2nd picture for explanation)

Third: Divide the lines in sectors and sum the points in each sector, then sum each sector's numbers to get the answer. (see 3rd picture for explanatin)

## Step 3: Coming More Complicate! 53x241

The square represents the intersections between the digits of the first number with the second number (e.g. in the above the first column is made up of the intersection of the 5 from the first number and the 2 from the second number) Think of each set of lines as a single unit. The square is broken up into columns from left to right. The first column will consist of the just the corner. In the example below, that is the intersection between the lines from 5 from the first number and the lines for 2 from the other. The next column will consist of the next set of intersections you come across going from left to right

Treat the sums of the intersections as two digit numbers with a leading zero if the number is less than 10. The first digit of the sum lines up with the last digit from the number above it. That makes the sums from above be: 10 26 17 03 _____ 12773Here's an example of a more complicated multiplication just to show you how easy can these be done.

Here, it involves a lot more digits so the sum is a bit more complicate than with just 1 digit per sector!

Thnks for reading!

Hope it helps!

PLZ VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

Treat the sums of the intersections as two digit numbers with a leading zero if the number is less than 10. The first digit of the sum lines up with the last digit from the number above it. That makes the sums from above be: 10 26 17 03 _____ 12773Here's an example of a more complicated multiplication just to show you how easy can these be done.

Here, it involves a lot more digits so the sum is a bit more complicate than with just 1 digit per sector!

Thnks for reading!

Hope it helps!

PLZ VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

VOTE FOR ME!

Participated in the

Back to School Contest