## CryptoDB

### Fuyuki Kitagawa

#### Publications

**Year**

**Venue**

**Title**

2021

TCC

Secure Software Leasing from Standard Assumptions
📺
Abstract

Secure software leasing (SSL) is a quantum cryptographic primitive that enables an authority to lease software to a user by encoding it into a quantum state. SSL prevents users from generating authenticated pirated copies of leased software, where authenticated copies indicate those run on legitimate platforms. Although SSL is a relaxed variant of quantum copy protection that prevents users from generating any copy of leased softwares, it is still meaningful and attractive. Recently, Ananth and La Placa proposed the first SSL scheme. It satisfies a strong security notion called infinite-term security. On the other hand, it has a drawback that it is based on public key quantum money, which is not instantiated with standard cryptographic assumptions so far. Moreover, their scheme only supports a subclass of evasive functions.
In this work, we present SSL schemes that satisfy a security notion called finite-term security based on the learning with errors assumption (LWE). Finite-term security is weaker than infinite-term security, but it still provides a reasonable security guarantee. Specifically, our contributions consist of the following.
- We construct a finite-term secure SSL scheme for pseudorandom functions from the LWE assumption against quantum adversaries.
- We construct a finite-term secure SSL scheme for a subclass of evasive functions from the LWE assumption against sub-exponential quantum adversaries.
- We construct finite-term secure SSL schemes for the functionalities above with classical communication from the LWE assumption against (sub-exponential) quantum adversaries.
SSL with classical communication means that entities exchange only classical information though they run quantum computation locally.
Our crucial tool is two-tier quantum lightning, which is introduced in this work and a relaxed version of quantum lighting. In two-tier quantum lightning schemes, we have a public verification algorithm called semi-verification and a private verification algorithm called full-verification. An adversary cannot generate possibly entangled two quantum states whose serial numbers are the same such that one passes the semi-verification, and the other also passes the full-verification. We show that we can construct a two-tier quantum lightning scheme from the LWE assumption.

2020

TCC

NIZK from SNARG
📺
Abstract

We give a construction of a non-interactive zero-knowledge (NIZK) argument for all NP languages based on a succinct non-interactive argument (SNARG) for all NP languages and a one-way function. The succinctness requirement for the SNARG is rather mild: We only require that the proof size be $|\pi|=\mathsf{poly}(\lambda)(|x|+|w|)^c$ for some constant $c<1/2$, where $|x|$ is the statement length, $|w|$ is the witness length, and $\lambda$ is the security parameter. Especially, we do not require anything about the efficiency of the verification.
Based on this result, we also give a generic conversion from a SNARG to a zero-knowledge SNARG assuming the existence of CPA secure public-key encryption. For this conversion, we require a SNARG to have efficient verification, i.e., the computational complexity of the verification algorithm is $\mathsf{poly}(\lambda)(|x|+|w|)^{o(1)}$. Before this work, such a conversion was only known if we additionally assume the existence of a NIZK.
Along the way of obtaining our result, we give a generic compiler to upgrade a NIZK for all NP languages with non-adaptive zero-knowledge to one with adaptive zero-knowledge. Though this can be shown by carefully combining known results, to the best of our knowledge, no explicit proof of this generic conversion has been presented.

2020

ASIACRYPT

Non-Committing Encryption with Constant Ciphertext Expansion from Standard Assumptions
📺
Abstract

Non-committing encryption (NCE) introduced by Canetti et al. (STOC '96) is a central tool to achieve multi-party computation protocols secure in the adaptive setting. Recently, Yoshida et al. (ASIACRYPT '19) proposed an NCE scheme based on the hardness of the DDH problem, which has ciphertext expansion $\mathcal{O}(\log\lambda)$ and public-key expansion $\mathcal{O}(\lambda^2)$.
In this work, we improve their result and propose a methodology to construct an NCE scheme that achieves \emph{constant} ciphertext expansion. Our methodology can be instantiated from the DDH assumption and the LWE assumption. When instantiated from the LWE assumption, the public-key expansion is $\lambda\cdot\mathsf{poly}(\log\lambda)$. They are the first NCE schemes satisfying constant ciphertext expansion without using iO or common reference strings.
Along the way, we define a weak notion of NCE, which satisfies only weak forms of correctness and security. We show how to amplify such a weak NCE scheme into a full-fledged one using wiretap codes with a new security property.

2020

ASIACRYPT

Circular Security Is Complete for KDM Security
📺
Abstract

Circular security is the most elementary form of key-dependent message (KDM) security, which allows us to securely encrypt only a copy of secret key bits. In this work, we show that circular security is complete for KDM security in the sense that an encryption scheme satisfying this security notion can be transformed into one satisfying KDM security with respect to all functions computable by a-priori bounded-size circuits (bounded-KDM security). This result holds in the presence of any number of keys and in any of secret-key/public-key and CPA/CCA settings. Such a completeness result was previously shown by Applebaum (EUROCRYPT 2011) for KDM security with respect to projection functions (projection-KDM security) that allows us to securely encrypt both a copy and a negation of secret key bits.
Besides amplifying the strength of KDM security, our transformation in fact can start from an encryption scheme satisfying circular security against CPA attacks and results in one satisfying bounded-KDM security against CCA attacks. This result improves the recent result by Kitagawa and Matsuda (TCC 2019) showing a CPA-to-CCA transformation for KDM secure public-key encryption schemes.

2019

CRYPTO

CCA Security and Trapdoor Functions via Key-Dependent-Message Security
📺
Abstract

We study the relationship among public-key encryption (PKE) satisfying indistinguishability against chosen plaintext attacks (IND-CPA security), that against chosen ciphertext attacks (IND-CCA security), and trapdoor functions (TDF). Specifically, we aim at finding a unified approach and some additional requirement to realize IND-CCA secure PKE and TDF based on IND-CPA secure PKE, and show the following two main results.As the first main result, we show how to achieve IND-CCA security via a weak form of key-dependent-message (KDM) security. More specifically, we construct an IND-CCA secure PKE scheme based on an IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme satisfying one-time KDM security with respect to projection functions (projection-KDM security). Projection functions are very simple functions with respect to which KDM security has been widely studied. Since the existence of projection-KDM secure PKE implies that of the above two building blocks, as a corollary of this result, we see that the existence of IND-CCA secure PKE is implied by that of projection-KDM secure PKE.As the second main result, we extend the above construction of IND-CCA secure PKE into that of TDF by additionally requiring a mild requirement for each building block. Our TDF satisfies adaptive one-wayness. We can instantiate our TDF based on a wide variety of computational assumptions. Especially, we obtain the first TDF (with adaptive one-wayness) based on the sub-exponential hardness of the constant-noise learning-parity-with-noise (LPN) problem.

2019

CRYPTO

Adaptively Secure and Succinct Functional Encryption: Improving Security and Efficiency, Simultaneously
Abstract

Functional encryption (FE) is advanced encryption that enables us to issue functional decryption keys where functions are hardwired. When we decrypt a ciphertext of a message m by a functional decryption key where a function f is hardwired, we can obtain f(m) and nothing else. We say FE is selectively or adaptively secure when target messages are chosen at the beginning or after function queries are sent, respectively. In the weakly-selective setting, function queries are also chosen at the beginning. We say FE is single-key/collusion-resistant when it is secure against adversaries that are given only-one/polynomially-many functional decryption keys, respectively. We say FE is sublinearly-succinct/succinct when the running time of an encryption algorithm is sublinear/poly-logarithmic in the function description size, respectively.In this study, we propose a generic transformation from weakly-selectively secure, single-key, and sublinearly-succinct (we call “building block”) PKFE for circuits into adaptively secure, collusion-resistant, and succinct (we call “fully-equipped”) one for circuits. Our transformation relies on neither concrete assumptions such as learning with errors nor indistinguishability obfuscation (IO). This is the first generic construction of fully-equipped PKFE that does not rely on IO.As side-benefits of our results, we obtain the following primitives from the building block PKFE for circuits: (1) laconic oblivious transfer (2) succinct garbling scheme for Turing machines (3) selectively secure, collusion-resistant, and succinct PKFE for Turing machines (4) low-overhead adaptively secure traitor tracing (5) key-dependent message secure and leakage-resilient public-key encryption. We also obtain a generic transformation from simulation-based adaptively secure garbling schemes that satisfy a natural decomposability property into adaptively indistinguishable garbling schemes whose online complexity does not depend on the output length.

2019

TCC

CPA-to-CCA Transformation for KDM Security
Abstract

We show that chosen plaintext attacks (CPA) security is equivalent to chosen ciphertext attacks (CCA) security for key-dependent message (KDM) security. Concretely, we show how to construct a public-key encryption (PKE) scheme that is KDM-CCA secure with respect to all functions computable by circuits of a-priori bounded size, based only on a PKE scheme that is KDM-CPA secure with respect to projection functions. Our construction works for KDM security in the single user setting.Our main result is achieved by combining the following two steps. First, we observe that by combining the results and techniques from the recent works by Lombardi et al. (CRYPTO 2019), and by Kitagawa et al. (CRYPTO 2019), we can construct a reusable designated-verifier non-interactive zero-knowledge (DV-NIZK) argument system based on an IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme satisfying one-time KDM security with respect to projection functions. This observation leads to the first reusable DV-NIZK argument system under the learning-parity-with-noise (LPN) assumption. Then, as the second and main technical step, we show a generic construction of a KDM-CCA secure PKE scheme using an IND-CPA secure PKE scheme, a reusable DV-NIZK argument system, and an SKE scheme satisfying one-time KDM security with respect to projection functions. Since the classical Naor-Yung paradigm (STOC 1990) with a DV-NIZK argument system does not work for proving KDM security, we propose a new construction methodology to achieve this generic construction.Moreover, we show how to extend our generic construction and achieve KDM-CCA security in the multi-user setting, by additionally requiring the underlying SKE scheme in our generic construction to satisfy a weak form of KDM security against related-key attacks (RKA-KDM security) instead of one-time KDM security. From this extension, we obtain the first KDM-CCA secure PKE schemes in the multi-user setting under the CDH or LPN assumption.

2019

ASIACRYPT

Simple and Efficient KDM-CCA Secure Public Key Encryption
Abstract

We propose two efficient public key encryption (PKE) schemes satisfying key dependent message security against chosen ciphertext attacks (KDM-CCA security). The first one is KDM-CCA secure with respect to affine functions. The other one is KDM-CCA secure with respect to polynomial functions. Both of our schemes are based on the KDM-CPA secure PKE schemes proposed by Malkin, Teranishi, and Yung (EUROCRYPT 2011). Although our schemes satisfy KDM-CCA security, their efficiency overheads compared to Malkin et al.’s schemes are very small. Thus, efficiency of our schemes is drastically improved compared to the existing KDM-CCA secure schemes.We achieve our results by extending the construction technique by Kitagawa and Tanaka (ASIACRYPT 2018). Our schemes are obtained via semi-generic constructions using an IND-CCA secure PKE scheme as a building block. We prove the KDM-CCA security of our schemes based on the decisional composite residuosity (DCR) assumption and the IND-CCA security of the building block PKE scheme.Moreover, our security proofs are tight if the IND-CCA security of the building block PKE scheme is tightly reduced to its underlying computational assumption. By instantiating our schemes using existing tightly IND-CCA secure PKE schemes, we obtain the first tightly KDM-CCA secure PKE schemes whose ciphertext consists only of a constant number of group elements.

2019

ASIACRYPT

Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based on the DDH Problem
Abstract

Non-committing encryption (NCE) was introduced by Canetti et al. (STOC ’96). Informally, an encryption scheme is non-committing if it can generate a dummy ciphertext that is indistinguishable from a real one. The dummy ciphertext can be opened to any message later by producing a secret key and an encryption random coin which “explain” the ciphertext as an encryption of the message. Canetti et al. showed that NCE is a central tool to achieve multi-party computation protocols secure in the adaptive setting. An important measure of the efficiently of NCE is the ciphertext rate, that is the ciphertext length divided by the message length, and previous works studying NCE have focused on constructing NCE schemes with better ciphertext rates.We propose an NCE scheme satisfying the ciphertext rate based on the decisional Diffie-Hellman (DDH) problem, where is the security parameter. The proposed construction achieves the best ciphertext rate among existing constructions proposed in the plain model, that is, the model without using common reference strings. Previously to our work, an NCE scheme with the best ciphertext rate based on the DDH problem was the one proposed by Choi et al. (ASIACRYPT ’09) that has ciphertext rate . Our construction of NCE is similar in spirit to that of the recent construction of the trapdoor function proposed by Garg and Hajiabadi (CRYPTO ’18).

2018

PKC

Key Dependent Message Security and Receiver Selective Opening Security for Identity-Based Encryption
Abstract

We construct two identity-based encryption (IBE) schemes. The first one is IBE satisfying key dependent message (KDM) security for user secret keys. The second one is IBE satisfying simulation-based receiver selective opening (RSO) security. Both schemes are secure against adaptive-ID attacks and do not have any a-priori bound on the number of challenge identities queried by adversaries in the security games. They are the first constructions of IBE satisfying such levels of security.Our constructions of IBE are very simple. We construct KDM secure IBE by transforming KDM secure secret-key encryption using IBE satisfying only ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security). Our simulation-based RSO secure IBE is based only on IND-ID-CPA secure IBE.We also demonstrate that our construction technique for KDM secure IBE is used to construct KDM secure public-key encryption. More precisely, we show how to construct KDM secure public-key encryption from KDM secure secret-key encryption and public-key encryption satisfying only ordinary indistinguishability against chosen plaintext attacks.

2018

PKC

Simple and Generic Constructions of Succinct Functional Encryption
Abstract

We propose simple and generic constructions of succinct functional encryption. Our key tool is exponentially-efficient indistinguishability obfuscator (XIO), which is the same as indistinguishability obfuscator (IO) except that the size of an obfuscated circuit (or the running-time of an obfuscator) is slightly smaller than that of a brute-force canonicalizer that outputs the entire truth table of a circuit to be obfuscated. A “compression factor” of XIO indicates how much XIO compresses the brute-force canonicalizer. In this study, we propose a significantly simple framework to construct succinct functional encryption via XIO and show that XIO is a powerful enough to achieve cutting-edge cryptography. In particular, we prove the followings:Single-key weakly succinct secret-key functional encryption (SKFE) is constructed from XIO (even with a bad compression factor) and one-way function.Single-key weakly succinct public-key functional encryption (PKFE) is constructed from XIO with a good compression factor and public-key encryption.Single-key weakly succinct PKFE is constructed from XIO (even with a bad compression factor) and identity-based encryption.
Our new framework has side benefits. Our constructions do not rely on any number theoretic or lattice assumptions such as decisional Diffie-Hellman and learning with errors assumptions. Moreover, all security reductions incur only polynomial security loss. Known constructions of weakly succinct SKFE or PKFE from XIO with polynomial security loss rely on number theoretic or lattice assumptions.

2018

ASIACRYPT

A Framework for Achieving KDM-CCA Secure Public-Key Encryption
Abstract

We propose a framework for achieving a public-key encryption (PKE) scheme that satisfies key dependent message security against chosen ciphertext attacks (KDM-CCA security) based on projective hash function. Our framework can be instantiated under the decisional diffie-hellman (DDH), quadratic residuosity (QR), and decisional composite residuosity (DCR) assumptions. The constructed schemes are KDM-CCA secure with respect to affine functions and compatible with the amplification method shown by Applebaum (EUROCRYPT 2011). Thus, they lead to PKE schemes satisfying KDM-CCA security for all functions computable by a-priori bounded size circuits. They are the first PKE schemes satisfying such a security notion in the standard model using neither non-interactive zero knowledge proof nor bilinear pairing. The above framework based on projective hash function captures only KDM-CCA security in the single user setting. However, we can prove the KDM-CCA security in the multi user setting of our concrete instantiations by using their algebraic structures explicitly. Especially, we prove that our DDH based scheme satisfies KDM-CCA security in the multi user setting with the same parameter setting as in the single user setting.

#### Coauthors

- Goichiro Hanaoka (1)
- Takahiro Matsuda (6)
- Ryo Nishimaki (4)
- Keisuke Tanaka (10)
- Keita Xagawa (1)
- Takashi Yamakawa (3)
- Yusuke Yoshida (2)