Introduction: Multi Channel Analyzer for Gamma Spectroscopy With Arduino & Theremino
Hello!
I'd like to show you my homemade multi-channel-analyzer for gamma spectroscopy using a.) the freeware theremino and b.) an arduino.
First of all I have to say some words about gamma spectroscopy at all. To detect radioactive decays you need a detector like a geiger-Counter. For gamma-spectroscopy you have to take a photomultiplier combined with a scintillation crystal made of sodium Iodide. You can get both things on ebay for less than 100 USD.
The gamma-rays from the radioactive source is going through the scintillation crystal and produce very faint light-flashes. Those light-flashes are recorded by the photomultiplier, who converts them is small voltage-pulses at the Output. For this the photomultiplier and the Crystal have to be in a absolutely light-tight housing. I use shrinkable tubing for that.
The Job of the multi-channel-analyzer (MCA) is to measure the height of those pulses coming from the photomultiplier. This is because every gamma-photon produces a voltage-pulse with a height depending on it's energy. The higher the energy of the gamma-photon, the higher the voltage pulse.
When the pulse-height has been measured, the number pulses with this recorded amplitude can be increased by one. At the end you get a spectrum of number of pulses versus pulse-height, which is characteristic for each radioactive element. For example cesium-137 emits gama-rays with an energy of 662 keV. They will produce pulses with a certain pulse-height. With a MCA you'll get a spectrum with a peak at a certain voltage corresponding to the pulse-height. Therefore you can identify radioactive sources with a MCA.
You don't get just the so called photo-peak, but also characteristic structures like the compton-edge, which is produced by the scattered electrons.
Step 1: High Voltage Power Supply
For the photomultiplier you'll need a high-voltage power supply. Most of the PMT (photomultiplier-Tubes) Need voltages between 800 V and 1500 V. I use a negative voltage, because then you'll get the signal from the PMT in an easier way.
There are a lot of different methods producing the high-voltage. In my case I use a cheap CCFL-Inverter combined with a simple electronic stabilization.
Step 2: The MCA Freeware Theremino
With the MCA-Freeware theremino (http://www.theremino.com/en/blog/gamma-spectrometry) you're able to record gamma-spectra in a very easy way. You'll just need the detector (photomultiplier + scintillation-crystal), the high voltage power supply an a cheap USB-Sound Card (http://www.dx.com/p/virtual-5-1-surround-usb-2-0-external-sound-card-22475#.WU-Hk7UUkeE)
Attachments
Step 3: The DIY-MCA With Arduino
Though the Freeware Theremino is a nice and well functioning Software I tried to realize an MCA with an arduino. The principle is quite simple:
First the storage capacitor of the Peak-detector is discharged. Then I close the Switch of the Peak-detector and wait until I get a pulse from the monoflop. Then I open the Switch and read in the voltage of the capacitor, which is equal to the maximum voltage of the incoming pulse. After this I refresh the graphics by adding one at the matching column.
To see whether the reading of the peak-voltage is fast enough, I inserted a test-pulse immediately after a variable delay and after I've read the voltage of the storage-capacitor. This confirmed my guess that without a delay I really measure the Peak-voltage and the capacitor isn't noticeably unloaded.
To make another test I fed my MCA with pulses with just one and not varying amplitude. You can see the result in the picture. I got a real spectrum with just one line as it should be.
Attachments
Step 4: The Peak Detector
For the MCA you need a circuit, which stores the height of an incoming pulse. I use a very simply method with a transistor, a diode and a capacitor. In the pictures you can see the pulses from the photomultiplier and the voltage of the peak-detector. The voltage of the peak-detector gets exponentially lower with time because the capacitor looses his charge over the resistor.
Step 5: The Complete Device
The complete device consists of the following In- and outputs:
- signal In: Here the signals from the photomultiplier are coming in
- gain: to vary the signal-heights
- offset: to vary the offset of the pulses
- signal out: to check the Signal with an oscilloscope
- comparator-level: to vary the level from which a signal is sent to the monoflop
- to counter: the significantly longer signal from the monoflop for external counters or something else
Step 6: Results
Here are some spectra taken with a Thorium-mantle (), an autunite and a cesium-spark-gap-tube. You can clearly see the photopeak at 662 keV...
Maybe you'd like to take a look at my YouTube-channel: https://www.youtube.com/user/stopperl16/videos
more physics projects: https://stoppi-homemade-physics.de/

Participated in the
Explore Science Contest 2017
6 Comments
1 year ago on Step 1
how many amps is the power supply? I am assuming it must be in microamps? I noticed it must be very very low current . Please advise...
Thanks!
George
Reply 1 year ago
Hello!
You are right. The photomultiplier needs less than 1 mA because of the high resistance of the voltage divider for the dynodes. But the power supply is able to deliver higher currents.
Cheers stoppi
Reply 1 year ago
Thanks for the quick reply!
I was experimenting and wanted to see if the power output would light a flashlamp or fluorescent lamp but it didn't. The only lamp that would illuminate was a neon lamp. when i adjust the pot i can see the the neon illumination increase or decrease so i noticed it must be working but at a very low amps so I am assuming it must be working. Wanted to know before I hook it up the circuit.
4 years ago
cool.
5 years ago
Can you help me? I want to know detail.
I use SiPM radiation detector.
So, I want to connect it with my radiation detector.
this is my paper - http://iopscience.iop.org/article/10.1088/1748-02...
if you help me. please send to mail.
my e-mail address : jeongho5248@gmail.com
5 years ago
Thanks for sharing! Never thought of it - such a simple and elegant way to determine radiation source! I have an old USSR-times scintillator laying around, that approach will make a great use of it :)
What sensitivity can I expect from it? At how many Bq signal is strong enough to reliably determine source type?