Introduction: Rubber Band Gatling Gun Turret (Arduino)
This is an Arduino controlled rubber band Gatling gun. It can hold about 20 rubber bands and it is operated with a USB game controller through processing. See this project on my website!
Step 1: Materials
The complete bill of materials can be seen below:
- Arduino UNO: https://amzn.to/2DLjxR2
- Jumper cables: https://amzn.to/2Q7kiKc
- Breadboard: https://amzn.to/2RYqiSK
- Servo motors: https://amzn.to/2S6E5GZ
- Gear motor: https://amzn.to/2DQUr3u
- Rubber bands: https://amzn.to/2S8zgwR
- Electrical tape: https://amzn.to/2BpvF8a
- Lego pieces: https://amzn.to/2DROMtU
- Craft sticks (big): https://amzn.to/2zldtuH
- Craft sticks (small): https://amzn.to/2zldG0X
- Hot glue sticks: https://amzn.to/2TCRND4
- Binder clips: https://amzn.to/2KnZWa3
- Clothespins: https://amzn.to/2BpOw2K
- Cardboard https://amzn.to/2BpOSGC
- Lazy susan: https://amzn.to/2OVr4xH
- Diode: https://amzn.to/2DPaVcn
- Dowel rods: https://amzn.to/2TycNLd
- String: https://amzn.to/2r6NkeV
- Battery case: https://amzn.to/2FBxD9s
- Transistor: https://amzn.to/2r0RiWm
Tools:
- Hot glue gun
- Screwdriver
- Scissors
- Drill
- Laptop
Step 2: Build the Barrel
Use two round Lego pieces with a hole in the middle large enough to fit the dowel through. (you may need to drill a larger hole)
- Glue craft sticks all the way around leaving as little space as possible
- Glue smaller craft sticks on the end (or just large ones cut in half)
- Leave about 1/4" overhang and stagger them between the larger ones
Step 3: Make Spokes and Finish Barrel
Make the stopper for end of barrel:
- Cut a craft stick into 4 1/2"pieces
- Glue onto end of dowel rod
- Tape over and insert to center of barrel
Add spokes to hold rubber bands
- Cut a dowel rod into 3/4" pieces (as many as the craft sticks on your barrel)
- Put a smaller plastic piece on the central dowel rod
- Glue the spokes around the small piece, aligning them between your craft sticks
Step 4: Attach to Motor
Attach the barrel to the gear motor:
- Cut some craft sticks and glue them to the motor, forming a longer "drive shaft"
- Make a platform on the top and glue a binder clip to hold the dowel rod in place
- Glue a clothespin on the front (aligned with the binder clip) to stabilize the dowel
- Attach the barrel (it should be able to spin freely)
Step 5: Make the Platform
Make a servo-controlled rotating platform:
- Drill a hole in the center of the lazy susan
- Glue the servo head to the base and the servo body to the top (through the hole)
- Anchor the servo in place
Servo aiming mechanism:
- Find the center of balance (COB)
- Use craft sticks to make arms extending forward on the motor to the COB
- Use cardboard to make a platform wide enough for the entire barrel-motor assembly
- Glue a servo in place on the arm
- Attach a clothespin clip to the other side aligned with the servo
- Make a "hinge" around a dowel rod using a clothespin and the binder clip
- Secure both sides to the cardboard base (I made mine too wide on the first try, but size according to the diameter of your lazy susan)
At this point, if you aren't interested in adding any electronics, you could just add a handle and have a fully functioning hand powered toy.
Step 6: Load Ammo
To load ammunition:
- Tie about 3' of string around the motor
- Wrap it around each spindle of the barrel
- Stretch a rubber band from the spindle to the edge of the gun
Give it a test spin by turning the motor with your hand. If the string seems difficult to pull off, you might want to try sanding the edges of the spindles to make it easier.
Step 7: Build the Circuit
Attach everything to the Arduino as shown above. You can also replace the 9 volt battery with another battery pack if you have one. Visit my website for a circuit simulation.
Step 8: Arduino Code
The only code that needs to be uploaded to the Arduino is actually already built in:
- Open the IDE
- Navigate to File > Examples (Examples from libraries) > Firmata > StandardFirmata
- Open and upload the code
However, I will include the same code below:
/* Firmata is a generic protocol for communicating with microcontrollers from software on a host computer. It is intended to work with any host computer software package. To download a host software package, please click on the following link to open the list of Firmata client libraries in your default browser. https://github.com/firmata/arduino#firmata-client-libraries Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved. Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved. Copyright (C) 2009 Shigeru Kobayashi. All rights reserved. Copyright (C) 2009-2016 Jeff Hoefs. All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See file LICENSE.txt for further informations on licensing terms. Last updated August 17th, 2017 */ #include <Servo.h> #include <Wire.h> #include <Firmata.h> #define I2C_WRITE B00000000 #define I2C_READ B00001000 #define I2C_READ_CONTINUOUSLY B00010000 #define I2C_STOP_READING B00011000 #define I2C_READ_WRITE_MODE_MASK B00011000 #define I2C_10BIT_ADDRESS_MODE_MASK B00100000 #define I2C_END_TX_MASK B01000000 #define I2C_STOP_TX 1 #define I2C_RESTART_TX 0 #define I2C_MAX_QUERIES 8 #define I2C_REGISTER_NOT_SPECIFIED -1 // the minimum interval for sampling analog input #define MINIMUM_SAMPLING_INTERVAL 1 /*============================================================================== * GLOBAL VARIABLES *============================================================================*/ #ifdef FIRMATA_SERIAL_FEATURE SerialFirmata serialFeature; #endif /* analog inputs */ int analogInputsToReport = 0; // bitwise array to store pin reporting /* digital input ports */ byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent /* pins configuration */ byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else /* timer variables */ unsigned long currentMillis; // store the current value from millis() unsigned long previousMillis; // for comparison with currentMillis unsigned int samplingInterval = 19; // how often to run the main loop (in ms) /* i2c data */ struct i2c_device_info { byte addr; int reg; byte bytes; byte stopTX; }; /* for i2c read continuous more */ i2c_device_info query[I2C_MAX_QUERIES]; byte i2cRxData[64]; boolean isI2CEnabled = false; signed char queryIndex = -1; // default delay time between i2c read request and Wire.requestFrom() unsigned int i2cReadDelayTime = 0; Servo servos[MAX_SERVOS]; byte servoPinMap[TOTAL_PINS]; byte detachedServos[MAX_SERVOS]; byte detachedServoCount = 0; byte servoCount = 0; boolean isResetting = false; // Forward declare a few functions to avoid compiler errors with older versions // of the Arduino IDE. void setPinModeCallback(byte, int); void reportAnalogCallback(byte analogPin, int value); void sysexCallback(byte, byte, byte*); /* utility functions */ void wireWrite(byte data) { #if ARDUINO >= 100 Wire.write((byte)data); #else Wire.send(data); #endif } byte wireRead(void) { #if ARDUINO >= 100 return Wire.read(); #else return Wire.receive(); #endif } /*============================================================================== * FUNCTIONS *============================================================================*/ void attachServo(byte pin, int minPulse, int maxPulse) { if (servoCount < MAX_SERVOS) { // reuse indexes of detached servos until all have been reallocated if (detachedServoCount > 0) { servoPinMap[pin] = detachedServos[detachedServoCount - 1]; if (detachedServoCount > 0) detachedServoCount--; } else { servoPinMap[pin] = servoCount; servoCount++; } if (minPulse > 0 && maxPulse > 0) { servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse); } else { servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin)); } } else { Firmata.sendString("Max servos attached"); } } void detachServo(byte pin) { servos[servoPinMap[pin]].detach(); // if we're detaching the last servo, decrement the count // otherwise store the index of the detached servo if (servoPinMap[pin] == servoCount && servoCount > 0) { servoCount--; } else if (servoCount > 0) { // keep track of detached servos because we want to reuse their indexes // before incrementing the count of attached servos detachedServoCount++; detachedServos[detachedServoCount - 1] = servoPinMap[pin]; } servoPinMap[pin] = 255; } void enableI2CPins() { byte i; // is there a faster way to do this? would probaby require importing // Arduino.h to get SCL and SDA pins for (i = 0; i < TOTAL_PINS; i++) { if (IS_PIN_I2C(i)) { // mark pins as i2c so they are ignore in non i2c data requests setPinModeCallback(i, PIN_MODE_I2C); } } isI2CEnabled = true; Wire.begin(); } /* disable the i2c pins so they can be used for other functions */ void disableI2CPins() { isI2CEnabled = false; // disable read continuous mode for all devices queryIndex = -1; } void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) { // allow I2C requests that don't require a register read // for example, some devices using an interrupt pin to signify new data available // do not always require the register read so upon interrupt you call Wire.requestFrom() if (theRegister != I2C_REGISTER_NOT_SPECIFIED) { Wire.beginTransmission(address); wireWrite((byte)theRegister); Wire.endTransmission(stopTX); // default = true // do not set a value of 0 if (i2cReadDelayTime > 0) { // delay is necessary for some devices such as WiiNunchuck delayMicroseconds(i2cReadDelayTime); } } else { theRegister = 0; // fill the register with a dummy value } Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom // check to be sure correct number of bytes were returned by slave if (numBytes < Wire.available()) { Firmata.sendString("I2C: Too many bytes received"); } else if (numBytes > Wire.available()) { Firmata.sendString("I2C: Too few bytes received"); } i2cRxData[0] = address; i2cRxData[1] = theRegister; for (int i = 0; i < numBytes && Wire.available(); i++) { i2cRxData[2 + i] = wireRead(); } // send slave address, register and received bytes Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData); } void outputPort(byte portNumber, byte portValue, byte forceSend) { // pins not configured as INPUT are cleared to zeros portValue = portValue & portConfigInputs[portNumber]; // only send if the value is different than previously sent if (forceSend || previousPINs[portNumber] != portValue) { Firmata.sendDigitalPort(portNumber, portValue); previousPINs[portNumber] = portValue; } } /* ----------------------------------------------------------------------------- * check all the active digital inputs for change of state, then add any events * to the Serial output queue using Serial.print() */ void checkDigitalInputs(void) { /* Using non-looping code allows constants to be given to readPort(). * The compiler will apply substantial optimizations if the inputs * to readPort() are compile-time constants. */ if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false); if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false); if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false); if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false); if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false); if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false); if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false); if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false); if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false); if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false); if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false); if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false); if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false); if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false); if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false); if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false); } // ----------------------------------------------------------------------------- /* sets the pin mode to the correct state and sets the relevant bits in the * two bit-arrays that track Digital I/O and PWM status */ void setPinModeCallback(byte pin, int mode) { if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE) return; if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) { // disable i2c so pins can be used for other functions // the following if statements should reconfigure the pins properly disableI2CPins(); } if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) { if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) { detachServo(pin); } } if (IS_PIN_ANALOG(pin)) { reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting } if (IS_PIN_DIGITAL(pin)) { if (mode == INPUT || mode == PIN_MODE_PULLUP) { portConfigInputs[pin / 8] |= (1 << (pin & 7)); } else { portConfigInputs[pin / 8] &= ~(1 << (pin & 7)); } } Firmata.setPinState(pin, 0); switch (mode) { case PIN_MODE_ANALOG: if (IS_PIN_ANALOG(pin)) { if (IS_PIN_DIGITAL(pin)) { pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver #if ARDUINO <= 100 // deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6 digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups #endif } Firmata.setPinMode(pin, PIN_MODE_ANALOG); } break; case INPUT: if (IS_PIN_DIGITAL(pin)) { pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver #if ARDUINO <= 100 // deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6 digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups #endif Firmata.setPinMode(pin, INPUT); } break; case PIN_MODE_PULLUP: if (IS_PIN_DIGITAL(pin)) { pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP); Firmata.setPinMode(pin, PIN_MODE_PULLUP); Firmata.setPinState(pin, 1); } break; case OUTPUT: if (IS_PIN_DIGITAL(pin)) { if (Firmata.getPinMode(pin) == PIN_MODE_PWM) { // Disable PWM if pin mode was previously set to PWM. digitalWrite(PIN_TO_DIGITAL(pin), LOW); } pinMode(PIN_TO_DIGITAL(pin), OUTPUT); Firmata.setPinMode(pin, OUTPUT); } break; case PIN_MODE_PWM: if (IS_PIN_PWM(pin)) { pinMode(PIN_TO_PWM(pin), OUTPUT); analogWrite(PIN_TO_PWM(pin), 0); Firmata.setPinMode(pin, PIN_MODE_PWM); } break; case PIN_MODE_SERVO: if (IS_PIN_DIGITAL(pin)) { Firmata.setPinMode(pin, PIN_MODE_SERVO); if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) { // pass -1 for min and max pulse values to use default values set // by Servo library attachServo(pin, -1, -1); } } break; case PIN_MODE_I2C: if (IS_PIN_I2C(pin)) { // mark the pin as i2c // the user must call I2C_CONFIG to enable I2C for a device Firmata.setPinMode(pin, PIN_MODE_I2C); } break; case PIN_MODE_SERIAL: #ifdef FIRMATA_SERIAL_FEATURE serialFeature.handlePinMode(pin, PIN_MODE_SERIAL); #endif break; default: Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM } // TODO: save status to EEPROM here, if changed } /* * Sets the value of an individual pin. Useful if you want to set a pin value but * are not tracking the digital port state. * Can only be used on pins configured as OUTPUT. * Cannot be used to enable pull-ups on Digital INPUT pins. */ void setPinValueCallback(byte pin, int value) { if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) { if (Firmata.getPinMode(pin) == OUTPUT) { Firmata.setPinState(pin, value); digitalWrite(PIN_TO_DIGITAL(pin), value); } } } void analogWriteCallback(byte pin, int value) { if (pin < TOTAL_PINS) { switch (Firmata.getPinMode(pin)) { case PIN_MODE_SERVO: if (IS_PIN_DIGITAL(pin)) servos[servoPinMap[pin]].write(value); Firmata.setPinState(pin, value); break; case PIN_MODE_PWM: if (IS_PIN_PWM(pin)) analogWrite(PIN_TO_PWM(pin), value); Firmata.setPinState(pin, value); break; } } } void digitalWriteCallback(byte port, int value) { byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0; if (port < TOTAL_PORTS) { // create a mask of the pins on this port that are writable. lastPin = port * 8 + 8; if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS; for (pin = port * 8; pin < lastPin; pin++) { // do not disturb non-digital pins (eg, Rx & Tx) if (IS_PIN_DIGITAL(pin)) { // do not touch pins in PWM, ANALOG, SERVO or other modes if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) { pinValue = ((byte)value & mask) ? 1 : 0; if (Firmata.getPinMode(pin) == OUTPUT) { pinWriteMask |= mask; } else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) { // only handle INPUT here for backwards compatibility #if ARDUINO > 100 pinMode(pin, INPUT_PULLUP); #else // only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier pinWriteMask |= mask; #endif } Firmata.setPinState(pin, pinValue); } } mask = mask << 1; } writePort(port, (byte)value, pinWriteMask); } } // ----------------------------------------------------------------------------- /* sets bits in a bit array (int) to toggle the reporting of the analogIns */ //void FirmataClass::setAnalogPinReporting(byte pin, byte state) { //} void reportAnalogCallback(byte analogPin, int value) { if (analogPin < TOTAL_ANALOG_PINS) { if (value == 0) { analogInputsToReport = analogInputsToReport & ~ (1 << analogPin); } else { analogInputsToReport = analogInputsToReport | (1 << analogPin); // prevent during system reset or all analog pin values will be reported // which may report noise for unconnected analog pins if (!isResetting) { // Send pin value immediately. This is helpful when connected via // ethernet, wi-fi or bluetooth so pin states can be known upon // reconnecting. Firmata.sendAnalog(analogPin, analogRead(analogPin)); } } } // TODO: save status to EEPROM here, if changed } void reportDigitalCallback(byte port, int value) { if (port < TOTAL_PORTS) { reportPINs[port] = (byte)value; // Send port value immediately. This is helpful when connected via // ethernet, wi-fi or bluetooth so pin states can be known upon // reconnecting. if (value) outputPort(port, readPort(port, portConfigInputs[port]), true); } // do not disable analog reporting on these 8 pins, to allow some // pins used for digital, others analog. Instead, allow both types // of reporting to be enabled, but check if the pin is configured // as analog when sampling the analog inputs. Likewise, while // scanning digital pins, portConfigInputs will mask off values from any // pins configured as analog } /*============================================================================== * SYSEX-BASED commands *============================================================================*/ void sysexCallback(byte command, byte argc, byte *argv) { byte mode; byte stopTX; byte slaveAddress; byte data; int slaveRegister; unsigned int delayTime; switch (command) { case I2C_REQUEST: mode = argv[1] & I2C_READ_WRITE_MODE_MASK; if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) { Firmata.sendString("10-bit addressing not supported"); return; } else { slaveAddress = argv[0]; } // need to invert the logic here since 0 will be default for client // libraries that have not updated to add support for restart tx if (argv[1] & I2C_END_TX_MASK) { stopTX = I2C_RESTART_TX; } else { stopTX = I2C_STOP_TX; // default } switch (mode) { case I2C_WRITE: Wire.beginTransmission(slaveAddress); for (byte i = 2; i < argc; i += 2) { data = argv[i] + (argv[i + 1] << 7); wireWrite(data); } Wire.endTransmission(); delayMicroseconds(70); break; case I2C_READ: if (argc == 6) { // a slave register is specified slaveRegister = argv[2] + (argv[3] << 7); data = argv[4] + (argv[5] << 7); // bytes to read } else { // a slave register is NOT specified slaveRegister = I2C_REGISTER_NOT_SPECIFIED; data = argv[2] + (argv[3] << 7); // bytes to read } readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX); break; case I2C_READ_CONTINUOUSLY: if ((queryIndex + 1) >= I2C_MAX_QUERIES) { // too many queries, just ignore Firmata.sendString("too many queries"); break; } if (argc == 6) { // a slave register is specified slaveRegister = argv[2] + (argv[3] << 7); data = argv[4] + (argv[5] << 7); // bytes to read } else { // a slave register is NOT specified slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED; data = argv[2] + (argv[3] << 7); // bytes to read } queryIndex++; query[queryIndex].addr = slaveAddress; query[queryIndex].reg = slaveRegister; query[queryIndex].bytes = data; query[queryIndex].stopTX = stopTX; break; case I2C_STOP_READING: byte queryIndexToSkip; // if read continuous mode is enabled for only 1 i2c device, disable // read continuous reporting for that device if (queryIndex <= 0) { queryIndex = -1; } else { queryIndexToSkip = 0; // if read continuous mode is enabled for multiple devices, // determine which device to stop reading and remove it's data from // the array, shifiting other array data to fill the space for (byte i = 0; i < queryIndex + 1; i++) { if (query[i].addr == slaveAddress) { queryIndexToSkip = i; break; } } for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) { if (i < I2C_MAX_QUERIES) { query[i].addr = query[i + 1].addr; query[i].reg = query[i + 1].reg; query[i].bytes = query[i + 1].bytes; query[i].stopTX = query[i + 1].stopTX; } } queryIndex--; } break; default: break; } break; case I2C_CONFIG: delayTime = (argv[0] + (argv[1] << 7)); if (argc > 1 && delayTime > 0) { i2cReadDelayTime = delayTime; } if (!isI2CEnabled) { enableI2CPins(); } break; case SERVO_CONFIG: if (argc > 4) { // these vars are here for clarity, they'll optimized away by the compiler byte pin = argv[0]; int minPulse = argv[1] + (argv[2] << 7); int maxPulse = argv[3] + (argv[4] << 7); if (IS_PIN_DIGITAL(pin)) { if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) { detachServo(pin); } attachServo(pin, minPulse, maxPulse); setPinModeCallback(pin, PIN_MODE_SERVO); } } break; case SAMPLING_INTERVAL: if (argc > 1) { samplingInterval = argv[0] + (argv[1] << 7); if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) { samplingInterval = MINIMUM_SAMPLING_INTERVAL; } } else { //Firmata.sendString("Not enough data"); } break; case EXTENDED_ANALOG: if (argc > 1) { int val = argv[1]; if (argc > 2) val |= (argv[2] << 7); if (argc > 3) val |= (argv[3] << 14); analogWriteCallback(argv[0], val); } break; case CAPABILITY_QUERY: Firmata.write(START_SYSEX); Firmata.write(CAPABILITY_RESPONSE); for (byte pin = 0; pin < TOTAL_PINS; pin++) { if (IS_PIN_DIGITAL(pin)) { Firmata.write((byte)INPUT); Firmata.write(1); Firmata.write((byte)PIN_MODE_PULLUP); Firmata.write(1); Firmata.write((byte)OUTPUT); Firmata.write(1); } if (IS_PIN_ANALOG(pin)) { Firmata.write(PIN_MODE_ANALOG); Firmata.write(10); // 10 = 10-bit resolution } if (IS_PIN_PWM(pin)) { Firmata.write(PIN_MODE_PWM); Firmata.write(DEFAULT_PWM_RESOLUTION); } if (IS_PIN_DIGITAL(pin)) { Firmata.write(PIN_MODE_SERVO); Firmata.write(14); } if (IS_PIN_I2C(pin)) { Firmata.write(PIN_MODE_I2C); Firmata.write(1); // TODO: could assign a number to map to SCL or SDA } #ifdef FIRMATA_SERIAL_FEATURE serialFeature.handleCapability(pin); #endif Firmata.write(127); } Firmata.write(END_SYSEX); break; case PIN_STATE_QUERY: if (argc > 0) { byte pin = argv[0]; Firmata.write(START_SYSEX); Firmata.write(PIN_STATE_RESPONSE); Firmata.write(pin); if (pin < TOTAL_PINS) { Firmata.write(Firmata.getPinMode(pin)); Firmata.write((byte)Firmata.getPinState(pin) & 0x7F); if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F); if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F); } Firmata.write(END_SYSEX); } break; case ANALOG_MAPPING_QUERY: Firmata.write(START_SYSEX); Firmata.write(ANALOG_MAPPING_RESPONSE); for (byte pin = 0; pin < TOTAL_PINS; pin++) { Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127); } Firmata.write(END_SYSEX); break; case SERIAL_MESSAGE: #ifdef FIRMATA_SERIAL_FEATURE serialFeature.handleSysex(command, argc, argv); #endif break; } } /*============================================================================== * SETUP() *============================================================================*/ void systemResetCallback() { isResetting = true; // initialize a defalt state // TODO: option to load config from EEPROM instead of default #ifdef FIRMATA_SERIAL_FEATURE serialFeature.reset(); #endif if (isI2CEnabled) { disableI2CPins(); } for (byte i = 0; i < TOTAL_PORTS; i++) { reportPINs[i] = false; // by default, reporting off portConfigInputs[i] = 0; // until activated previousPINs[i] = 0; } for (byte i = 0; i < TOTAL_PINS; i++) { // pins with analog capability default to analog input // otherwise, pins default to digital output if (IS_PIN_ANALOG(i)) { // turns off pullup, configures everything setPinModeCallback(i, PIN_MODE_ANALOG); } else if (IS_PIN_DIGITAL(i)) { // sets the output to 0, configures portConfigInputs setPinModeCallback(i, OUTPUT); } servoPinMap[i] = 255; } // by default, do not report any analog inputs analogInputsToReport = 0; detachedServoCount = 0; servoCount = 0; /* send digital inputs to set the initial state on the host computer, * since once in the loop(), this firmware will only send on change */ /* TODO: this can never execute, since no pins default to digital input but it will be needed when/if we support EEPROM stored config for (byte i=0; i < TOTAL_PORTS; i++) { outputPort(i, readPort(i, portConfigInputs[i]), true); } */ isResetting = false; } void setup() { Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION); Firmata.attach(ANALOG_MESSAGE, analogWriteCallback); Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback); Firmata.attach(REPORT_ANALOG, reportAnalogCallback); Firmata.attach(REPORT_DIGITAL, reportDigitalCallback); Firmata.attach(SET_PIN_MODE, setPinModeCallback); Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback); Firmata.attach(START_SYSEX, sysexCallback); Firmata.attach(SYSTEM_RESET, systemResetCallback); // to use a port other than Serial, such as Serial1 on an Arduino Leonardo or Mega, // Call begin(baud) on the alternate serial port and pass it to Firmata to begin like this: // Serial1.begin(57600); // Firmata.begin(Serial1); // However do not do this if you are using SERIAL_MESSAGE Firmata.begin(57600); while (!Serial) { ; // wait for serial port to connect. Needed for ATmega32u4-based boards and Arduino 101 } systemResetCallback(); // reset to default config } /*============================================================================== * LOOP() *============================================================================*/ void loop() { byte pin, analogPin; /* DIGITALREAD - as fast as possible, check for changes and output them to the * FTDI buffer using Serial.print() */ checkDigitalInputs(); /* STREAMREAD - processing incoming messagse as soon as possible, while still * checking digital inputs. */ while (Firmata.available()) Firmata.processInput(); // TODO - ensure that Stream buffer doesn't go over 60 bytes currentMillis = millis(); if (currentMillis - previousMillis > samplingInterval) { previousMillis += samplingInterval; /* ANALOGREAD - do all analogReads() at the configured sampling interval */ for (pin = 0; pin < TOTAL_PINS; pin++) { if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) { analogPin = PIN_TO_ANALOG(pin); if (analogInputsToReport & (1 << analogPin)) { Firmata.sendAnalog(analogPin, analogRead(analogPin)); } } } // report i2c data for all device with read continuous mode enabled if (queryIndex > -1) { for (byte i = 0; i < queryIndex + 1; i++) { readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX); } } } #ifdef FIRMATA_SERIAL_FEATURE serialFeature.update(); #endif }
Step 9: Processing Libraries
This step uses Processing, which is pretty similar to Arduino, but it runs on your computer instead of on a board. Once you have it up and going, you will need to install some libraries for it. Go to Sketch > Import Library > Add Library. Add the following libraries:
- Arduino (Firmata)
- Game Control Plus - more information here
- G4P
Once added, close and reopen processing to be sure the libraries are fully installed
Step 10: Configure Controller
Once in the Processing IDE, navigate to File &> Examples > Contributed Libraries > Game Control Plus > Configurator
- Plug in any USB game controller to your computer (a mouse will work)
- Use the screen that comes up to create a data file tailored to your specific device - see here for more information: http://lagers.org.uk/gamecontrol/index.html
Step 11: Processing Code
Run this code in processing:
import org.gamecontrolplus.gui.*;//include libraries import org.gamecontrolplus.*; import net.java.games.input.*; import processing.serial.*; import cc.arduino.*; Arduino arduino; ControlIO control; Configuration config; ControlDevice gpad;//name of controller int angleX = 90;//default servo angles int angleY = 90; public void setup() { size(400, 240); //println(Arduino.list()); arduino = new Arduino(this, Arduino.list()[0], 57600); control = ControlIO.getInstance(this); gpad = control.getMatchedDevice("AFTERGLOW"); //name of the configrator data file if (gpad == null) { println("No suitable device configured"); System.exit(-1); } arduino.pinMode(4, Arduino.OUTPUT); arduino.pinMode(2, Arduino.SERVO); arduino.pinMode(3, Arduino.SERVO); arduino.servoWrite(2, angleX); arduino.servoWrite(3, angleY); } void draw() { background(0, 128, 0); float trigger = gpad.getSlider("TRIGGER").getValue();//name of the controller variable used for firing (change to the name you created with the configurator) if (trigger <= -.95) { arduino.digitalWrite(4, 1); } else { arduino.digitalWrite(4, 0); } float x = 2*map(gpad.getSlider("RIGHTJOYX").getValue(), -1, 1, 1, -1);//pan float y = 2*gpad.getSlider("RIGHTJOYY").getValue();//tilt if (angleX >= 1 && angleX <= 179) { angleX = angleX+int(x); } if (angleY >= 1 && angleY <= 179) { angleY = angleY+int(y); } arduino.servoWrite(2, angleX); arduino.servoWrite(3, angleY); }