Introduction: Wooden Fidget Cube

About: A teenager who likes to make stuff with his own hands. You can check out my YouTube channel to find all my projects.

I am participating in the "Wooden Toys" and "Homemade Gifts" contests here on Instructables. If you like this Instructable and feel like it's a worthy winner, it would be awesome if you'd give me a vote!

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This autumn so called "fidget toys" have become increasingly popular. I saw a lot of fidget spinners online, but not a single person attempted to make a fidget cube. Why is that? Well, it's quite hard to know how the cubes are made and function, because you never get to see the inside. Most DIY people decides to make a spinner instead because it's fairly easy to construct and the design is pretty straight-forward. It's just a bearing inside a spinning piece of wood.

Now what is a fidget cube exactly? Well, it's a toy meant for fidgeting. Some might use it while doing computer or schoolwork, instead of fiddling with something like a pencil (because we all know the loud clicking is terribly annoying). A fidget cube basically fits those who are having a hard time to focus on intensive work while sitting still. It serves as a stress reliever and many find them a great thing to have. They are supposedly also popular among ADHD people, who normally have a hard time focusing on their work and needs to move around physically. Instead of walking around you could keep your hands busy with a fidget toy such as this one.

I was originally going to make a spinner as well, but seeing that (as far as I knew) no one had made a fidget cube yet, I decided to tackle the challenge. I used wood because it's the material I'm most used to, and I also like the look of it. The cube works very well and does what it's supposed to. As a bonus I added a magnet so that you can stick it to any steel surface (a fridge for example) for convenient storing.

If you prefer videos before text tutorials, I have put together a well edited YouTube video which shows all the steps in detail. As you can see it can be found on the top of the page.

Step 1: Download and Print the Template

I spent some time making this sketch to give myself and you an idea of what I’m going to make. The sketch shows how everything is put together and what each individual layer looks like from a side view. Keep in mind that this isn't an actual template, but rather something to use as a reference. Here's the link to the PDF file:

Step 2: Cut Out the Plywood Layers

I cut the plywood out using my jigsaw pressed against a straight edge.

The plywood I’m using is 7mm thick. It is important that the 5 layers stacked on top of each other have the same height as each individual piece’s width and height. Because I’m using 7mm plywood my squares measures 35mm in both directions. Were you to use 18mm plywood for a 5 layer cube, your squares would need to measure 90mm. Very simple math is needed for this calculation:

Material thickness (in this case 7mm) x Amount of layers (in this case 5) = Required width and height of each square (in this case 35mm)

Step 3: Make the Inner Parts

Here I have cut out, shaped and sanded the inside parts using a coping saw, metal files and sandpaper. Be aware that this process is very time-consuming and fiddly. It takes a lot of patience and willingness to make these parts by hand, so if you happen to own a CNC that would definitely be an easier, faster and more accurate method. As you can see on the first picture I used my sketch as a reference to know which parts are supposed to be where. I numbered the plywood square to keep track of the order. The inner parts were made using the sketch as sort of a template. The parts are made out of some 5mm walnut wood laminated together and then sanded down to the same thickness as the plywood.

Note that there is a third type of part being made, which is the “spinner” that later sits on top of the cube. I don’t have a separate picture of it, but you will see it later in the build. If you want to know how I made it, I explain it in great detail in the video.

Step 4: Finish the Plywood Layers and Start the Assembly

The sketch I’ve provided you with shows how the three inner plywood layers are cut. What you want to do here is cut out a cavity for the moving parts so that they can move freely inside the cube. This is another fiddly process which takes quite some time and patience as well. I cut the cavities using my coping saw, so a lot of cleaning and tweaking had to be done afterwards. You could get better results using a scroll saw and a fine tooth blade. I have to mention that it is very important to drill out the holes at this stage as you won’t be able to adjust anything once the cube is all laminated together. Use the numbers to know which parts is which. Round over and sand the two outer layers (1 and 5) as that+ cannot be done after the cube is put together (clamping the finished cube in a vise will obviously brake the inner parts).

Step 5: Proceed the Assembly

The middle plywood layer (number 3) has a button that is spring loaded. At this stage you can see that I have already glued together layer 2 and 3. Make sure the orientation is right so that the parts protrude at the correct sides of the cube (according to the template). You don’t want them sticking out the wrong direction! Before I laminated layer 2 and 3 I positioned and drilled the hole in layer 2 for the pivot point of the button part. Once I had a pivot point I could study the arc and tweak the shape of layer 3 so that the button would swivel freely without binding.

Once I had the button motion figured out and working I glued a spring from and old pen onto the underside of the button. I originally tried to use superglue for this, but seeing how it wouldn’t harden I went with hot glue instead. Worked much better and the glue hardened quickly. On the picture you can see how I made a special cavity in the plywood for the spring. This means that when you press hard on the button you won’t over-compress and break the spring. The button movement is stopped at its lowest position by the plywood edge.

Step 6: Finish the Assembly

So now that you have all parts cut out, shaped and sanded – it’s time for the final assembly! Layer 2 and 3 (which is already laminated) goes on top of layer 1. One of the gear-like rollers goes in between those two layers, and a small steel pin is inserted through the hole shown on layer 3. This pin protrudes 7 millimeters above layer 3, just enough for it to go through the cavity of layer 4. Layer 3 and 4 gets glued together next, and the second roller is inserted through the pin sticking up at layer 4. Layer 5 is simply just glued onto layer 4, making the roller stay in place.

If you have done the assembly right so far you should have a roller to the left in layer 2 and 3 and a spring powered button to the right in layer 3. Clamp the cube together using a vise or a clamp, making sure that none of the glued layers slips to the side while applying pressure.

Step 7: Finish the Outside

This next step includes filing and sanding the outside surfaces of the cube. Sides that are empty - such as the bottom - can easily be filed smooth using a metal file. The goal here is to eliminate any unevenness caused by the lamination. Some surfaces are hard to finish due to the inner parts sticking out and being in the way. Here I recommend taking it slow and careful. Make sure you don’t clamp any of the sides that have inner parts sticking out or else they might break and your work up to this point will have been completely useless.

After filing you can sand the cube if you want. I believe I went up to 600 grit sandpaper. That gave me a nice looking surface that is smooth to the touch.

Step 8: Mount the “spinner”

To mount the spinner I simply measured the center of the cube’s top, drilled a small diameter hole, placed the spinner above the hole and glued a brass pin to the hole using two-part epoxy. There is basically no upward force ever being applied to the spinner, so the glue does not need to be this strong to keep it in place.

Step 9: Mount a Magnet

This step is totally optional and you don’t need to do this, although it is a nice feature to have. I found this rare-earth-magnet in a drawer, which I know is capable of holding at least 500 grams of downward force before it lets go of whatever metal it is attached to. The cube only weighs around 30 or 40 grams, so there is no doubt the magnet is strong enough for this application. I drilled a hole in the bottom of the cube and glued in the magnet using some two-part epoxy. This allows me to stick it anywhere there is metal - on a fridge for example.

Step 10: Apply Finish

This step is as hard you want it to be. What type of finish to use is up to you, but personally I went with boiled linseed oil because of how easy it is to apply. The result was great and I’m happy, although the picture above has some really weird saturation going on. The cube is not nearly that yellow in real life. It has a lot more orange and warm color/tint to it.

Step 11: Fiddle All Your Problems Away!

I like it and my cat do aswell. A great thing to have!

Step 12: In Conclusion

This was a challenging project for me, but at the same time I learned a lot. It wouldn’t have been such a fiddly process if the cube wasn’t so small. A larger one would be a lot easier to make, and would probably work fine as a gift for a baby (just make sure it’s big enough for the baby not to swallow it). The picture shows how big my cube is beside a standard 9V battery. It certainly is small!

Now I truly hope you've enjoyed this Instructable. Thanks so much for watching/reading!

Wooden Toys Challenge 2016

Runner Up in the
Wooden Toys Challenge 2016

Homemade Gifts Contest 2016

Participated in the
Homemade Gifts Contest 2016